Constructing models of various types 0000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Finite Hilbert's incidence geometry & friends

Kristina Ago

Department of Mathematics and Informatics University of Novi Sad

Joint work with B. Bašić, M. Maksimović and M. Šobot

FINITE GEOMETRY & FRIENDS Brussels, Belgium September 18, 2023 Constructing models of various types $_{\rm OOOOOO}$

Some exact values

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hilbert's axioms of incidence

• Primitive terms: point, line, plane.

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- Primitive terms: point, line, plane.
- Primitive relation: incidence.

Constructing models of various types 0000000

Some exact values

- Primitive terms: point, line, plane.
- Primitive relation: incidence.
- Axioms (A):
 - I_1 : For every two points A, B there exists a line a that contains each of the points A, B.
 - I_2 : For every two points A, B there exists no more than one line that contains each of the points A, B.
 - I_3 : There exist at least two points on a line. There exist at least three points that do not lie on a line.
 - *I*₄: For any three points *A*, *B*, *C* that do not lie on the same line there exists a plane α that contains each of the points *A*, *B*, *C*. For every plane there exists a point which it contains.
 - I_5 : For any three points A, B, C that do not lie on one and the same line there exists no more than one plane that contains each of the three points A, B, C.
 - I_6 : If two points A, B of a line a lie in a plane α then every point of a lies in the plane α .
 - h: If two planes α , β have a point A in common then they have at least one more point B in common.
 - I_8 : There exist at least four points which do not lie in a plane.

Constructing models of various types ${\scriptstyle 0000000}$

Some exact values 0000000

- Primitive terms: point, line, plane.
- Primitive relation: incidence.
- Axioms (A):
 - I_1 : For every two points A, B there exists a line a that contains each of the points A, B.
 - I_2 : For every two points A, B there exists no more than one line that contains each of the points A, B.
 - I_3 : There exist at least two points on a line. There exist at least three points that do not lie on a line.
 - *I*₄: For any three points *A*, *B*, *C* that do not lie on the same line there exists a plane α that contains each of the points *A*, *B*, *C*. For every plane there exists a point which it contains.
 - I_5 : For any three points A, B, C that do not lie on one and the same line there exists no more than one plane that contains each of the three points A, B, C.
 - I_6 : If two points A, B of a line a lie in a plane α then every point of a lies in the plane α .
 - h: If two planes α , β have a point A in common then they have at least one more point B in common.
 - I_8 : There exist at least four points which do not lie in a plane.
- We are interested in finite models (*P*, *L*, PI) of *A*.

Constructing models of various types ${\scriptstyle 0000000}$

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The 4-point model

Constructing models of various types ${\scriptstyle 0000000}$

Some exact values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The 4-point model

The smallest finite model of \mathscr{A} :

Constructing models of various types ${\scriptstyle \bullet 0 0 0 0 0 0}$

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Tetrahedron-models

Constructing models of various types ••••••• Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tetrahedron-models

Theorem

Let *n* be an integer, $n \ge 4$. Let *i* be an integer, $2 \le i \le \lfloor \frac{n}{2} \rfloor$. Let: $P = \{1, 2, ..., n\},$ $L = \{\{1, 2, ..., i\}, \{i + 1, i + 2, ..., n\}\} \cup \{\{x, y\} : 1 \le x \le i, i + 1 \le y \le n\},$ $PI = \{\{1, 2, ..., i, x\} : i + 1 \le x \le n\} \cup \{\{i + 1, i + 2, ..., n, y\} : 1 \le y \le i\}.$ Then (P, L, PI) is a model of \mathscr{A} .

Constructing models of various types ••••••• Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tetrahedron-models

Theorem

Let *n* be an integer, $n \ge 4$. Let *i* be an integer, $2 \le i \le \lfloor \frac{n}{2} \rfloor$. Let: $P = \{1, 2, ..., n\},$ $L = \{\{1, 2, ..., i\}, \{i + 1, i + 2, ..., n\}\} \cup \{\{x, y\} : 1 \le x \le i, i + 1 \le y \le n\},$ $PI = \{\{1, 2, ..., i, x\} : i + 1 \le x \le n\} \cup \{\{i + 1, i + 2, ..., n, y\} : 1 \le y \le i\}.$ Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *tetrahedron-model*.

Constructing models of various types ••••••• Some exact values

Tetrahedron-models

Theorem

• We call a model of this type a *tetrahedron-model*.

Constructing models of various types •000000 Some exact values

< 注 ▶ < 注

< □ > < 同 >

Tetrahedron-models

Theorem

• We call a model of this type a *tetrahedron-model*.

Proposition

There are $\lfloor \frac{n-2}{2} \rfloor$ nonisomorphic tetrahedron-models of \mathscr{A} .

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some exact values

Projective spaces

• Axioms of a projective space:

Constructing models of various types 000000

Some exact values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.

Constructing models of various types 000000

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.

Constructing models of various types 000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P3: Any line is incident with at least three points.

Constructing models of various types 000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P3: Any line is incident with at least three points.
 - P4: There are at least two lines.

Constructing models of various types 000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P_3 : Any line is incident with at least three points.
 - P4: There are at least two lines.
- The *n*-dimensional projective space over the field of order *q*, denoted by PG(n, q): the (n + 1)-dimensional vector space over the field of order *q*, where points are interpreted as 1-dimensional subspaces, and lines are interpreted as 2-dimensional subspaces.

Constructing models of various types 000000 Some exact values

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P3: Any line is incident with at least three points.
 - P4: There are at least two lines.
- The *n*-dimensional projective space over the field of order *q*, denoted by PG(n, q): the (n + 1)-dimensional vector space over the field of order *q*, where points are interpreted as 1-dimensional subspaces, and lines are interpreted as 2-dimensional subspaces.
- By the Veblen-Young theorem, if the dimension of a finite projective space is at least 3 (which means that there is a pair of nonintersecting lines), then that space is isomorphic to PG(n, q) for some n and q.

Constructing models of various types 000000

Some exact values

Projective spaces

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P_3 : Any line is incident with at least three points.
 - P4: There are at least two lines.
- The *n*-dimensional projective space over the field of order *q*, denoted by PG(n, q): the (n + 1)-dimensional vector space over the field of order *q*, where points are interpreted as 1-dimensional subspaces, and lines are interpreted as 2-dimensional subspaces.
- By the Veblen-Young theorem, if the dimension of a finite projective space is at least 3 (which means that there is a pair of nonintersecting lines), then that space is isomorphic to PG(n, q) for some n and q.

Theorem

Let F^4 be a 4-dimensional vector space over some finite field F of order q. Let P be the set of 1-dimensional subspaces of F^4 , let L be the set of 2-dimensional subspaces, and let PI be the set of 3-dimensional subspaces. Then (P, L, PI) is a model of \mathscr{A} .

Constructing models of various types 000000

Some exact values

Projective spaces

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P_3 : Any line is incident with at least three points.
 - P4: There are at least two lines.
- The *n*-dimensional projective space over the field of order *q*, denoted by PG(n, q): the (n + 1)-dimensional vector space over the field of order *q*, where points are interpreted as 1-dimensional subspaces, and lines are interpreted as 2-dimensional subspaces.
- By the Veblen-Young theorem, if the dimension of a finite projective space is at least 3 (which means that there is a pair of nonintersecting lines), then that space is isomorphic to PG(n, q) for some n and q.

Theorem

Let F^4 be a 4-dimensional vector space over some finite field F of order q. Let P be the set of 1-dimensional subspaces of F^4 , let L be the set of 2-dimensional subspaces, and let PI be the set of 3-dimensional subspaces. Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *projective-space-model*.

Constructing models of various types 000000

Some exact values

Projective spaces

- Axioms of a projective space:
 - P_1 : For any two distinct points P and Q there is exactly one line that is incident with P and Q. This line is denoted by PQ.
 - P_2 : Let A, B, C and D be four points such that AB intersects the line CD. Then AC also intersects the line BD.
 - P3: Any line is incident with at least three points.
 - P4: There are at least two lines.
- The *n*-dimensional projective space over the field of order *q*, denoted by PG(n, q): the (n + 1)-dimensional vector space over the field of order *q*, where points are interpreted as 1-dimensional subspaces, and lines are interpreted as 2-dimensional subspaces.
- By the Veblen-Young theorem, if the dimension of a finite projective space is at least 3 (which means that there is a pair of nonintersecting lines), then that space is isomorphic to PG(n, q) for some n and q.

Theorem

Let F^4 be a 4-dimensional vector space over some finite field F of order q. Let P be the set of 1-dimensional subspaces of F^4 , let L be the set of 2-dimensional subspaces, and let PI be the set of 3-dimensional subspaces. Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *projective-space-model*.

Proposition

Up to isomorphism, there is one n-element projective-space-model of \mathscr{A} for each number n of the form $q^3 + q^2 + q + 1$, where q is a prime power.

Constructing models of various types 0000000

Some exact values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Extensions of projective planes

Constructing models of various types 0000000

Some exact values

Extensions of projective planes

- Projective planes (two-dimensional projective spaces): replace P_2 by
 - P'_2 : Any two lines have at least one point in common.

Constructing models of various types 0000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extensions of projective planes

- Projective planes (two-dimensional projective spaces): replace P₂ by
 - P'_2 : Any two lines have at least one point in common.

Theorem

Let P' and L' be the set of points and the set of lines of some projective plane. Let:

$$P = P' \cup \{X\}, \text{ where } X \notin P'; \\ L = L' \cup \{\{Y, X\} : Y \in P'\}; \\ PI = \{P'\} \cup \{I \cup \{X\} : I \in L'\}.$$

Then (P, L, PI) is a model of \mathscr{A} .

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extensions of projective planes

- Projective planes (two-dimensional projective spaces): replace P_2 by
 - P'_2 : Any two lines have at least one point in common.

Theorem

Let P' and L' be the set of points and the set of lines of some projective plane. Let:

$$P = P' \cup \{X\}, \text{ where } X \notin P';$$

$$L = L' \cup \{\{Y, X\} : Y \in P'\};$$

$$PI = \{P'\} \cup \{I \cup \{X\} : I \in L'\}.$$

Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *projective-plane-model*.

Constructing models of various types 000000

Some exact values

Extensions of projective planes

- Projective planes (two-dimensional projective spaces): replace P₂ by
 - P'_2 : Any two lines have at least one point in common.

Theorem

Let P' and L' be the set of points and the set of lines of some projective plane. Let:

$$P = P' \cup \{X\}, \text{ where } X \notin P'; \\ L = L' \cup \{\{Y, X\} : Y \in P'\}; \\ \mathsf{PI} = \{P'\} \cup \{I \cup \{X\} : I \in L'\}.$$

Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *projective-plane-model*.

Proposition

For each n of the form $q^2 + q + 2$, where q is a number such that there exists a projective plane of order q, there are as many n-element projective-plane-models of \mathscr{A} as there are nonisomorphic projective planes with n - 1 points.

Constructing models of various types ${\scriptstyle 000 \bullet 000}$

Some exact values

Extensions of projective planes

The projective-plane-model with 14 points:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Constructing models of various types OOOOOOO

Some exact values

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Combinatorial designs

Constructing models of various types 0000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Combinatorial designs

The pair D = (X, β), with |X| = v and β ⊆ P_{=k}(X), is called a t-(v, k, λ) design, and the members of β are called *blocks*, if every t-subset of X occurs in exactly λ blocks. We assume v > k > t ≥ 1 and λ ≥ 1.

Constructing models of various types 0000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Combinatorial designs

- The pair D = (X, β), with |X| = v and β ⊆ P_{=k}(X), is called a t-(v, k, λ) design, and the members of β are called blocks, if every t-subset of X occurs in exactly λ blocks. We assume v > k > t ≥ 1 and λ ≥ 1.
- An intersection number of a design: cardinality of the intersection of some two blocks in the design.

Constructing models of various types 0000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Combinatorial designs

- The pair D = (X, β), with |X| = v and β ⊆ P_{=k}(X), is called a t-(v, k, λ) design, and the members of β are called blocks, if every t-subset of X occurs in exactly λ blocks. We assume v > k > t ≥ 1 and λ ≥ 1.
- An intersection number of a design: cardinality of the intersection of some two blocks in the design.
- Quasi-symmetric designs: designs with exactly two intersection numbers.

Constructing models of various types 0000000

Some exact values

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Combinatorial designs

- The pair D = (X, β), with |X| = v and β ⊆ P_{=k}(X), is called a t-(v, k, λ) design, and the members of β are called blocks, if every t-subset of X occurs in exactly λ blocks. We assume v > k > t ≥ 1 and λ ≥ 1.
- An intersection number of a design: cardinality of the intersection of some two blocks in the design.
- Quasi-symmetric designs: designs with exactly two intersection numbers.

Theorem

Let (X, β) be a quasi-symmetric 3-(v, k, 1) design with intersection numbers 0 and 2. Let P = X, let L be the set of all two-element subsets of X and let $PI = \beta$. Then (P, L, PI) is a model of \mathscr{A} .

Constructing models of various types 0000000

Some exact values

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Combinatorial designs

- The pair D = (X, β), with |X| = v and β ⊆ P_{=k}(X), is called a t-(v, k, λ) design, and the members of β are called blocks, if every t-subset of X occurs in exactly λ blocks. We assume v > k > t ≥ 1 and λ ≥ 1.
- An intersection number of a design: cardinality of the intersection of some two blocks in the design.
- Quasi-symmetric designs: designs with exactly two intersection numbers.

Theorem

Let (X, β) be a quasi-symmetric 3-(v, k, 1) design with intersection numbers 0 and 2. Let P = X, let L be the set of all two-element subsets of X and let $PI = \beta$. Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *design-model*.
Constructing models of various types 0000000

Some exact values

Combinatorial designs

- The pair D = (X, β), with |X| = v and β ⊆ P_{=k}(X), is called a t-(v, k, λ) design, and the members of β are called blocks, if every t-subset of X occurs in exactly λ blocks. We assume v > k > t ≥ 1 and λ ≥ 1.
- An intersection number of a design: cardinality of the intersection of some two blocks in the design.
- Quasi-symmetric designs: designs with exactly two intersection numbers.

Theorem

Let (X, β) be a quasi-symmetric 3-(v, k, 1) design with intersection numbers 0 and 2. Let P = X, let L be the set of all two-element subsets of X and let $PI = \beta$. Then (P, L, PI) is a model of \mathscr{A} .

• We call a model of this type a *design-model*.

Proposition

There are exactly two nonisomorphic design-models of \mathscr{A} . These are the 3-(8,4,1) design and the 3-(22,6,1) design, corresponding to n = 8 and n = 22, respectively.

Constructing models of various types 000000

Some exact values

Combinatorial designs

The design-model with 8 points:

Constructing models of various types 000000

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A lower bound for the number of *n*-point models

Constructing models of various types 000000

Some exact values

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A lower bound for the number of *n*-point models

• Hilblnc(*n*): the number of nonisomorphic models of \mathscr{A} with the point set $\{1, 2, ..., n\}$.

A lower bound for the number of *n*-point models

• HilbInc(*n*): the number of nonisomorphic models of \mathscr{A} with the point set $\{1, 2, ..., n\}$.

Theorem

Let n be a positive integer. Then:

$$\mathsf{HilbInc}(n) \geqslant \left\lfloor \frac{n-2}{2} \right\rfloor + i + j + k,$$

where

$$i = \begin{cases} 1, & \text{if } n = q^3 + q^2 + q + 1 \text{ for some prime power } q; \\ 0, & \text{otherwise;} \end{cases}$$

$$j = \begin{cases} \text{the number of projective} & \text{if } n = q^2 + q + 2 \text{ for some } q \text{ for which} \\ \text{planes of order } q, & \text{exists a projective plane of order } q; \\ 0, & \text{otherwise;} \end{cases}$$

$$k = \begin{cases} 1, & \text{if } n = 8 \text{ or } n = 22; \\ 0, & \text{otherwise.} \end{cases}$$

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Matroids to the rescue

Constructing models of various types 0000000

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Matroids to the rescue

• Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:

Constructing models of various types 0000000

Some exact values •000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Matroids to the rescue

- Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:
 - $\emptyset \in \mathscr{I};$

Constructing models of various types 0000000

Some exact values •000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Matroids to the rescue

• Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:

•
$$\varnothing \in \mathscr{I};$$

•
$$I \in \mathscr{I} \land I' \subseteq I \Rightarrow I' \in \mathscr{I};$$

Constructing models of various types 0000000

Some exact values •000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Matroids to the rescue

• Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:

•
$$\varnothing \in \mathscr{I}$$
;
• $I \in \mathscr{I} \land I' \subseteq I \Rightarrow I' \in \mathscr{I}$;
• $I, I' \in \mathscr{I} \land |I'| < |I| \Rightarrow (\exists e \in I \setminus I')(I' \cup \{e\} \in \mathscr{I}).$

Constructing models of various types 0000000

Some exact values •000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Matroids to the rescue

- Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:
 - $\varnothing \in \mathscr{I}$; • $I \in \mathscr{I} \land I' \subseteq I \Rightarrow I' \in \mathscr{I}$; • $I, I' \in \mathscr{I} \land |I'| < |I| \Rightarrow (\exists e \in I \setminus I')(I' \cup \{e\} \in \mathscr{I}).$

• Simple matroid: $P_{\leq 2}(E) \subseteq \mathscr{I}$.

Constructing models of various types 0000000

Some exact values •000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Matroids to the rescue

- Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:
 - $\varnothing \in \mathscr{I}$; • $I \in \mathscr{I} \land I' \subseteq I \Rightarrow I' \in \mathscr{I}$; • $I, I' \in \mathscr{I} \land |I'| < |I| \Rightarrow (\exists e \in I \setminus I')(I' \cup \{e\} \in \mathscr{I}).$
- Simple matroid: $P_{\leq 2}(E) \subseteq \mathscr{I}$.
- Rank: for $X \subseteq E$,

$$r(X) = \max\{|Y| : Y \subseteq X, Y \in \mathscr{I}\}.$$

Constructing models of various types

Some exact values

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Matroids to the rescue

- Matroid: (E, \mathscr{I}) , where E is finite and $\mathscr{I} \subseteq P(E)$, such that:
 - $\varnothing \in \mathscr{I}$; • $I \in \mathscr{I} \land I' \subseteq I \Rightarrow I' \in \mathscr{I}$; • $I, I' \in \mathscr{I} \land |I'| < |I| \Rightarrow (\exists e \in I \setminus I')(I' \cup \{e\} \in \mathscr{I}).$
- Simple matroid: $P_{\leq 2}(E) \subseteq \mathscr{I}$.
- Rank: for $X \subseteq E$,

$$r(X) = \max\{|Y| : Y \subseteq X, Y \in \mathscr{I}\}.$$

• Closure operator: $cl : P(E) \mapsto P(E)$,

$$cl(X) = \{x \in E : r(X \cup \{x\}) = r(X)\}.$$

Closed set: cl(X) = X.

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A neat duality

Introduction	
00	

Constructing models of various types 0000000

Some exact values 000000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A neat duality

- Recall that the following statement can be derived from \mathscr{A} :
 - $I_{\rm CC}$ For every plane there exist three points which it contains, which do not lie on the same line.

Introduction	
00	

Constructing models of various types 0000000

Some exact values 000000

A neat duality

- Recall that the following statement can be derived from \mathscr{A} :
 - $I_{\mathbb{C}}(\cdot)$ For every plane there exist three points which it contains, which do not lie on the same line.

Theorem

a) Let Mod, Mod = (P, L, Pl), be a model of $\mathscr{A} \setminus \{I_7\} \cup \{I_{\ddots}\}$. Let $M_{Mod} = (P, \mathscr{I})$, where

 $\mathscr{I} = \{X : X \subseteq P, |X| \leq 2 \text{ or } (|X| = 3 \text{ and the elements of } X \text{ are not collinear}) \\ \text{ or } (|X| = 4 \text{ and the elements of } X \text{ are not coplanar})\}.$

Then M_{Mod} is a simple matroid of rank 4.

Introd	uction
00	

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

A neat duality

- Recall that the following statement can be derived from \mathscr{A} :
 - I_{\square} : For every plane there exist three points which it contains, which do not lie on the same line.

Theorem

a) Let Mod, Mod = (P, L, Pl), be a model of $\mathscr{A} \setminus \{I_7\} \cup \{I_{\ddots}\}$. Let $M_{\text{Mod}} = (P, \mathscr{I})$, where

 $\mathscr{I} = \{X : X \subseteq P, |X| \leq 2 \text{ or } (|X| = 3 \text{ and the elements of } X \text{ are not collinear}) \\ \text{or } (|X| = 4 \text{ and the elements of } X \text{ are not coplanar})\}.$

Then M_{Mod} is a simple matroid of rank 4.

b) Let M, $M = (E, \mathscr{I})$, be a simple matroid of rank 4. Let $Mod_M = (E, L, PI)$, where

$$L = \{X : X \text{ is a closed subset of } E \text{ of rank } 2\}$$

and

 $PI = \{X : X \text{ is a closed subset of } E \text{ of rank } 3\}.$

Then Mod_M is a model of the axiom set $\mathscr{A} \setminus \{I_7\} \cup \{I_1\}$.

Introd	uction
00	

Constructing models of various types $_{\rm OOOOOO}$

Some exact values 000000

A neat duality

- Recall that the following statement can be derived from \mathscr{A} :
 - $I_{\mathbb{C}^{1}}$. For every plane there exist three points which it contains, which do not lie on the same line.

Theorem

a) Let Mod, Mod = (P, L, Pl), be a model of $\mathscr{A} \setminus \{I_7\} \cup \{I_{\ddots}\}$. Let $M_{\text{Mod}} = (P, \mathscr{I})$, where

 $\mathscr{I} = \{X : X \subseteq P, |X| \leq 2 \text{ or } (|X| = 3 \text{ and the elements of } X \text{ are not collinear}) \\ \text{or } (|X| = 4 \text{ and the elements of } X \text{ are not coplanar})\}.$

Then M_{Mod} is a simple matroid of rank 4.

b) Let M, $M = (E, \mathscr{I})$, be a simple matroid of rank 4. Let $Mod_M = (E, L, PI)$, where

 $L = \{X : X \text{ is a closed subset of } E \text{ of rank } 2\}$

and

$$PI = \{X : X \text{ is a closed subset of } E \text{ of rank } 3\}.$$

Then Mod_M is a model of the axiom set $\mathscr{A} \setminus \{I_7\} \cup \{I_{\cdot}\}$.

c) If Mod is a model of the axiom set $\mathscr{A} \setminus \{I_7\} \cup \{I_{\cdot}\}$, then $Mod_{Mod} = Mod$. Similarly, if M is a simple matroid of rank 4, then $M_{Mod_M} = M$.

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Counting up to 9

Constructing models of various types 0000000

Some exact values 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counting up to 9

Therefore, enumerating models of the axiom set
 A \ {*I*₇} ∪ {*I*_{..}} is equivalent to enumerating simple matroids of rank 4.

Constructing models of various types

Some exact values 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counting up to 9

- Therefore, enumerating models of the axiom set
 A \ {I₇} ∪ {I_{..}} is equivalent to enumerating simple matroids of rank 4.
- Each model of \mathscr{A} is also a model of $\mathscr{A} \cup \{I_{:.}\}$.

Counting up to 9

- Therefore, enumerating models of the axiom set
 A \ {I₇} ∪ {I_{..}} is equivalent to enumerating simple matroids of rank 4.
- Each model of \mathscr{A} is also a model of $\mathscr{A} \cup \{I_{:.}\}$.
- There are 185,981 simple matroids of rank 4 with 9 elements (and a negligible number of them with less elements), and thus the same number of models of A \ {*I*₇} ∪ {*I*₂}. We select those which additionally satisfy *I*₇, and thus obtain the number of models of A with up to 9 elements.

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A new approach for larger values

Constructing models of various types 0000000

Some exact values

A new approach for larger values

• However, there are almost five billion such matroids with 10 elements, and thus we need a new approach for them.

Constructing models of various types 0000000

Some exact values

A new approach for larger values

• However, there are almost five billion such matroids with 10 elements, and thus we need a new approach for them.

Theorem

a) Let Mod, Mod = (P, L), be a model of
$$\{I_1, I_2, I_3\}$$
. Let
 $M_{Mod} = (P, \mathscr{I})$, where
 $\mathscr{I} = \{X : X \subseteq P, |X| \leq 2 \text{ or}$
 $(|X| = 3 \text{ and the elements of } X \text{ are not collinear})\}$
Then M_{Mod} is a simple matroid of rank 3.

Constructing models of various types 0000000

Some exact values

A new approach for larger values

• However, there are almost five billion such matroids with 10 elements, and thus we need a new approach for them.

Theorem

Constructing models of various types 0000000

Some exact values

A new approach for larger values

• However, there are almost five billion such matroids with 10 elements, and thus we need a new approach for them.

Theorem

c) If Mod is a model of the axiom set $\{I_1, I_2, I_3\}$, then $Mod_{M_{Mod}} = Mod$. Similarly, if M is a simple matroid of rank 3, then $M_{Mod_M} = M$.

Constructing models of various types 0000000

Some exact values

A new approach for larger values

Constructing models of various types 0000000

Some exact values 0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new approach for larger values

The algorithm:

• For each matroid, we determine the model of $\{I_1, I_2, I_3\}$ that corresponds to the considered matroid, that is, we determine the set of lines.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new approach for larger values

- For each matroid, we determine the model of $\{I_1, I_2, I_3\}$ that corresponds to the considered matroid, that is, we determine the set of lines.
- Then we determine subsets of points that are necessarily in the same plane; let us call such subsets "partial planes."

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new approach for larger values

- For each matroid, we determine the model of $\{I_1, I_2, I_3\}$ that corresponds to the considered matroid, that is, we determine the set of lines.
- Then we determine subsets of points that are necessarily in the same plane; let us call such subsets "partial planes."
- If two partial planes intersect in exactly one point, then (at least) one of them has to be "fused" with some other plane; we try all essentially different possibilities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A new approach for larger values

- For each matroid, we determine the model of $\{I_1, I_2, I_3\}$ that corresponds to the considered matroid, that is, we determine the set of lines.
- Then we determine subsets of points that are necessarily in the same plane; let us call such subsets "partial planes."
- If two partial planes intersect in exactly one point, then (at least) one of them has to be "fused" with some other plane; we try all essentially different possibilities.
- We iterate this as long as there are pairs of partial planes that intersect in exactly one point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A new approach for larger values

- For each matroid, we determine the model of $\{I_1, I_2, I_3\}$ that corresponds to the considered matroid, that is, we determine the set of lines.
- Then we determine subsets of points that are necessarily in the same plane; let us call such subsets "partial planes."
- If two partial planes intersect in exactly one point, then (at least) one of them has to be "fused" with some other plane; we try all essentially different possibilities.
- We iterate this as long as there are pairs of partial planes that intersect in exactly one point.
- In most of the cases, all the points will "fall" in the same plane; if the process stops before this happens, we reach a model of \mathscr{A} .

A new approach for larger values

- For each matroid, we determine the model of $\{I_1, I_2, I_3\}$ that corresponds to the considered matroid, that is, we determine the set of lines.
- Then we determine subsets of points that are necessarily in the same plane; let us call such subsets "partial planes."
- If two partial planes intersect in exactly one point, then (at least) one of them has to be "fused" with some other plane; we try all essentially different possibilities.
- We iterate this as long as there are pairs of partial planes that intersect in exactly one point.
- In most of the cases, all the points will "fall" in the same plane; if the process stops before this happens, we reach a model of \mathscr{A} .
- Running the algorithm on all the 28,872,972 simple matroids of rank 3 with 12 elements took about ten days on 16 cores (and the time spent on matroids with less elements was insignificant).

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introd	uction
00	

Constructing models of various types 0000000

Some exact values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Epilogue

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, n = 1, 2, ..., 12, is given in the following table:

n	1	2	3	4	5	6	7	8	9	10	11	12
HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6
Introduction												
--------------	--											
00												

Constructing models of various types 0000000

Some exact values 0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Epilogue

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, n = 1, 2, ..., 12, is given in the following table:

n	1	2	3	4	5	6	7	8	9	10	11	12
HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6

• All these models are tetrahedron-models, with exactly three exceptions:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Epilogue

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, n = 1, 2, ..., 12, is given in the following table:

n	1	2	3	4	5	6	7	8	9	10	11	12
HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6

• All these models are tetrahedron-models, with exactly three exceptions: a projective-plane-model for n = 8,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Epilogue

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, n = 1, 2, ..., 12, is given in the following table:

n	1	2	3	4	5	6	7	8	9	10	11	12
HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6

• All these models are tetrahedron-models, with exactly three exceptions: a projective-plane-model for n = 8, a design-model also for n = 8, and finally,

Constructing models of various types 0000000

Some exact values 0000000

Epilogue

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, n = 1, 2, ..., 12, is given in the following table:

n	1	2	3	4	5	6	7	8	9	10	11	12
HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6

All these models are tetrahedron-models, with exactly three exceptions: a
projective-plane-model for n = 8, a design-model also for n = 8, and finally, for
n = 12, we have got a model that (to our surprise, and also delight) belongs to
none of the presented types, namely:

$$\begin{split} \mathcal{P} &= \{1,2,3,\ldots,12\};\\ \mathcal{L} &= \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{5,6\},\{5,7\},\{5,8\},\{6,7\},\\ &\{6,8\},\{7,8\},\{9,10\},\{9,11\},\{9,12\},\{10,11\},\{10,12\},\{11,12\},\\ &\{1,5,9\},\{1,6,12\},\{1,7,10\},\{1,8,11\},\{2,5,11\},\{2,6,10\},\{2,7,12\},\\ &\{2,8,9\},\{3,5,12\},\{3,6,9\},\{3,7,11\},\{3,8,10\},\{4,5,10\},\{4,6,11\},\\ &\{4,7,9\},\{4,8,12\}\};\\ \mathsf{PI} &= \{\{1,2,3,4\},\{5,6,7,8\},\{9,10,11,12\},\{1,2,5,8,9,11\},\{1,2,6,7,10,12\},\\ &\{1,3,5,6,9,12\},\{1,3,7,8,10,11\},\{1,4,5,7,9,10\},\{1,4,6,8,11,12\},\\ &\{2,3,5,7,11,12\},\{2,3,6,8,9,10\},\{2,4,5,6,10,11\},\{2,4,7,8,9,12\},\\ &\{3,4,5,8,10,12\},\{3,4,6,7,9,11\}\}. \end{split}$$

Constructing models of various types $_{\rm OOOOOO}$

Some exact values

Epilogue

The unexpected 12-element model:

