A contribution towards the classification of tensors in $\mathbb{F}_{q}^{3} \otimes S^{2} \mathbb{F}_{q}^{3}, q$ even

Nour Alnajjarine
(Joint work with Michel Lavrauw)
Sabancı University - Lebanese International University
(University of Primorska)
Finite Geometry and Friends
Vrije Universiteit Brussel

September 19, 2023

BASIC DEFINITIONS AND NOTATIONS

Let V_{1}, \ldots, V_{t} be vector spaces over the field $\mathbb{F}_{q} ; \operatorname{dim}\left(V_{i}\right)=m_{i}$.

- The t-order tensor product $V:=V_{1} \otimes \ldots \otimes V_{t}$ is defined as the set of multilinear functions from $V_{1}^{\vee} \times \ldots \times V_{t}^{\vee}$ into \mathbb{F}_{q}, where V_{i}^{\vee} is the dual space of V_{i}.
- Fundamental (pure or rank-1) tensors are tensors of the form $v_{1} \otimes \ldots \otimes v_{t}$.
- The rank of a tensor $A \in V$ is the smallest integer r such that

$$
\begin{equation*}
A=\sum_{i=1}^{r} A_{i} \tag{1}
\end{equation*}
$$

with each A_{i} a fundamental tensor of V.

Questions of Interests:

- Algorithms: given a tensor A, does there exist an algorithm that determines $R(A)$ and decompose it as the sum of fundamental tensors?
- Classifications: can we determine orbits of tensors under some natural group actions:
- $G:=$ Stabiliser in $\mathrm{GL}(V)$ of the set of rank-1 tensors.

Note:

- $\operatorname{Rank}(A)=\operatorname{Rank}(\lambda A)$ for $A \in V$ and $\lambda \in \mathbb{F}$.
- Determining the rank of tensors in $V \Longleftrightarrow$ Determining the rank of points in $\mathrm{PG}(V)$.
- Example: $\operatorname{PG}\left(\mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}\right) \cong \operatorname{PG}(17, \mathrm{q})$.

Known Classifications:

- There are $5 G$-orbits of (non-zero) Tensors in $\mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{2}[\mathrm{M}$. Lavrauw, J. Sheekey, 2014].
- There are $8 G$-orbits of (non-zero) Tensors in $\mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{3}[\mathrm{M}$. Lavrauw, J. Sheekey, 2015].
- There are $17 G$-orbits of (non-zero) Tensors in $\mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}$ [M. Lavrauw, J. Sheekey, 2015].

$$
\mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}:
$$

q odd: progress has been made by classifying partially symmetric tensors in $\mathbb{F}_{q}^{3} \otimes S^{2} \mathbb{F}_{q}^{3}$ equivalent to planes of $\mathrm{PG}(5, q)$ containing at least one rank-1 point [M. Lavrauw, T. Popiel, J. Sheekey, 2020].

Interesting Connections:

Tensors \longleftrightarrow Finite geometric objects

Tensors can represent:

1. subspaces of projective spaces,
2. algebraic varieties,
3. linear systems of hypersurfaces,
4. semifields,
5. arcs.

TENSORS AND ALGEBRAIC VARIETIES:

- Fundamental tensors in $\mathrm{PG}(V) \Longleftrightarrow$ Points of the Segre variety in $\operatorname{PG}(N, q)$, where $N=\prod \operatorname{dim}\left(V_{i}\right)-1$.
- Example: $\sigma_{1,2,2}: \operatorname{PG}\left(\mathbb{F}_{q}^{2}\right) \times \mathrm{PG}\left(\mathbb{F}_{q}^{3}\right) \times \mathrm{PG}\left(\mathbb{F}_{q}^{3}\right) \longrightarrow \mathrm{PG}(17, q)$

$$
\left(\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle,\left\langle v_{3}\right\rangle\right) \mapsto\left\langle v_{1} \otimes v_{2} \otimes v_{3}\right\rangle .
$$

- Fundamental symmetric tensors in $\mathrm{PG}(V=U \otimes \ldots \otimes U) \Longleftrightarrow$ Points of the Veronese variety in $\operatorname{PG}(M, q)$, where $M=(\underset{t}{t+\operatorname{dim}(U)-1})-1$.
- The Veronese surface: $\mathcal{V}\left(\mathbb{F}_{q}\right) \subset S_{2,2}\left(\mathbb{F}_{q}\right)$:

$$
\begin{gathered}
\nu: \mathrm{PG}(2, q) \longrightarrow \mathrm{PG}(5, q) \\
\left\langle\left(x_{0}, x_{1}, x_{2}\right)\right\rangle \mapsto\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right) .
\end{gathered}
$$

- $K:=$ Stabiliser of $\mathcal{V}\left(\mathbb{F}_{q}\right)$.
- Fundamental alternating tensors in $\mathrm{PG}(V=U \otimes \ldots \otimes U) \Longleftrightarrow$ Points of the Grassmann variety in $\operatorname{PG}(M, q)$, where $M=\left(\operatorname{dim}_{t}(U)\right.$.

Tensors and subspaces of $\operatorname{PG}(5, q)$:

Subspaces of $\operatorname{PG}(5, q)$ are points in $\operatorname{PG}\left(S^{2} \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{r}\right)$.

- $r=1 \longrightarrow$ points,
- $r=2 \longrightarrow$ lines,
- $r=3 \longrightarrow$ planes,
- $r=4 \longrightarrow$ solids,
- $r=5 \longrightarrow$ hyperplanes.

TENSORS AND LINEAR SYSTEM OF CONICS:

Linear systems of conics := Subspaces(PG(2-forms in the projective plane)).

Subspaces of $\mathrm{PG}(5, q)$ correspond to linear systems of conics in $\mathrm{PG}(2, q)$.

- a pencil of conic $\mathcal{P}=\left\langle C_{1}, C_{2}\right\rangle$ corresponds to a solid of $\mathrm{PG}(5, q)$.
- a net of conics $\mathcal{N}=\left\langle C_{1}, C_{2}, C_{3}\right\rangle$ corresponds to a plane of $\operatorname{PG}(5, q)$.
- a web of conics $\mathcal{W}=\left\langle C_{1}, C_{2}, C_{3}, C_{4}\right\rangle$ corresponds to a line of $\operatorname{PG}(5, q)$.
- Classifying linear systems of conics in $\mathrm{PG}(2, q) \Longleftrightarrow$ classifying subspaces of $\operatorname{PG}(5, q) \Longleftrightarrow$ classifying tensors in $\operatorname{PG}\left(S^{2} \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{r}\right)$.

PREVIOUS RESULTS ON LINEAR SYSTEMS OF CONICS:

- Dickson (1908): Classified pencils of conics over \mathbb{F}_{q}, q odd.
- Wilson (1914): Incompletely classified rank-one nets of conics (nets with at least a //) over \mathbb{F}_{q}, q odd.
- Campbell (1927): Incompletely classified pencils of conics over \mathbb{F}_{q}, q even.
- Campbell (1928): Incompletely classified nets of conics over \mathbb{F}_{q}, q even.

PREVIOUS RESULTS ON ORBITS OF SUBSPACES OF $\operatorname{PG}(5, q)$:

- points, hyperplanes, for all $q: \sqrt{ }$
- lines, for all $q: \sqrt{ }(\Longrightarrow$ solids, for q odd: $\sqrt{ })$ [M. Lavrauw, T. Popiel, 2020]
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q odd: \checkmark [M. Lavrauw, T. Popiel, J. Sheekey, 2020]
- solids, for q even: $\sqrt{ }$
[N. Alnajjarine, M. Lavrauw, T. Popiel, 2022]

PG(5, odd) vs PG(5, even $):$

- q odd: \exists a polarity: the set of conic planes of $\mathcal{V}\left(\mathbb{F}_{q}\right) \rightarrow$ the set of tangent planes of $\mathcal{V}\left(\mathbb{F}_{q}\right)$.
- lines $\stackrel{\text { polarity }}{\Longleftrightarrow}$ solids.
- $\mathcal{N}=\left\langle C_{1}, C_{2}, C_{3}\right\rangle ; C_{1}=/ / \longrightarrow$
$\pi=H_{1} \cap H_{2} \cap H_{3} \xrightarrow{\text { polarity }}$
$\pi^{\prime}=\left\langle P_{1}, P_{2}, P_{3}\right\rangle ; P_{1} \in \mathcal{V}\left(\mathbb{F}_{q}\right) \longrightarrow$
Rank-one nets of conics \Longleftrightarrow planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially.
- q even: No such polarity \longrightarrow
- lines $\stackrel{?}{\Longleftrightarrow}$ solids.
- Rank-one nets of conics $\stackrel{?}{\Longleftrightarrow}$ planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially.

Representation of Subspaces of PG(5,q):

- $\operatorname{PG}(5, q)=\left\langle\mathcal{V}\left(\mathbb{F}_{q}\right)\right\rangle$.
- Every point $x=\left(x_{0}, . ., x_{5}\right) \in \mathrm{PG}(5, q)$ can be represented by

$$
M_{x}=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{3} & x_{4} \\
x_{2} & x_{4} & x_{5}
\end{array}\right]
$$

- The plane in $\operatorname{PG}(5, q)$ spanned by the 1st three points of the standard frame is

$$
\pi=\left[\begin{array}{ccc}
x & y & z \\
y & . & \cdot \\
z & . & .
\end{array}\right]:=\left\{\left[\begin{array}{ccc}
x & y & z \\
y & 0 & 0 \\
z & 0 & 0
\end{array}\right]:(x, y, z) \in \mathbb{F}_{q}^{3} ;(x, y, z) \in \mathrm{PG}(2, q)\right\} .
$$

Planes of $\operatorname{PG}(5, q)$ and cubic curves in $\operatorname{PG}(2, q)$
$\pi \longrightarrow \mathrm{C}=\mathcal{Z}$ (determinant of its matrix representation).

K-ORBITS INVARIANTS:

Let W be a subspace of $\operatorname{PG}(5, q), K:=$ Setwise stabiliser of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ in $\operatorname{PGL}(6, q)$.
Let $U_{1}, U_{2}, \ldots, U_{m}$ denote the distinct K-orbits of r-spaces in $\mathrm{PG}(5, q)$.

- The rank distribution of W is

$$
\left[r_{1}, r_{2}, r_{3}\right]
$$

where

$$
r_{i}=\# \text { of rank } i \text { points in } W
$$

- The r-space orbit-distribution of W is

$$
\left[u_{1}, u_{2}, \ldots, u_{m}\right]
$$

where
$u_{i}=\#$ of r-spaces incident with W which belong to the orbit U_{i}.

Properties and Approach:

- Approach: We study the possible Point-orbit distributions and discuss the possibility of planes with same Point-OD to split or not under the action of K.
- Lemma: Planes with rank distribution $\left[1,0, q^{2}+q\right]$ and $\left[2, r_{2}<q, r_{3}\right]$ do not exist.
- Rank-2 points: The geometry associated with rank-1,2 points can help! $\left(\pi=\left\langle Q_{1}, Q_{2}, ?\right\rangle\right.$, where $\operatorname{rank}\left(Q_{1}\right)=1$ and $\left.\operatorname{rank}\left(Q_{2}\right)=2\right)$.

Lines in PG $(5, q), q$ EVEN:

Orbits	Point-OD's : $\left[r_{1}, r_{2 n}, r_{2 s}, r_{3}\right]$
o_{5}	$[2,0, q-1,0]$
o_{6}	$[1,1, q-1,0]$
$o_{8,1}$	$[1,0,1, q-1]$
$o_{8,2}$	$[1,1,0, q-1]$
o_{9}	$[1,0,0, q]$
o_{10}	$[0,0, q+1,0]$
$o_{12,1}$	$[0, q+1,0,0]$
$o_{12,2}$	$[0,1, q, 0]$
$o_{13,1}$	$[0,1,1, q-1]$
$o_{13,2}$	$[0,0,2, q-1]$
o_{14}	$[0,0,3, q-2]$
o_{15}	$[0,0,1, q]$
$o_{16,1}$	$[0,1,0, q]$
$o_{16,2}$	$[0,0,1, q]$
o_{17}	$[0,0,0, q+1]$

Table: K-orbits of lines in $\operatorname{PG}(5, q), q$ even [M. Lavrauw, T. Popiel, 2020].

The Structure of Discussion:

THE CASE $r_{2 n}=0$:

$\pi=\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle: \operatorname{rank}\left(Q_{1}\right)=1, \operatorname{rank}\left(Q_{i}\right)=2, i=2,3$, and $\pi \cap \mathcal{N}=\emptyset$.
$-\mathcal{C}_{Q_{2}}=\mathcal{C}_{Q_{3}}: Q_{1} \in \mathcal{C}_{Q_{2}}$ or $Q_{1} \notin \mathcal{C}_{Q_{2}} \rightarrow \Sigma_{6}$.

- $Q_{1}=U=\mathcal{C}_{Q_{2}} \cap \mathcal{C}_{Q_{3}}$.
- $Q_{1} \in \mathcal{C}_{Q_{2}} \backslash \mathcal{C}_{Q_{3}}$.
- $Q_{1} \notin \mathcal{C}_{Q_{2}} \cup \mathcal{C}_{Q_{3}}$:
- $\left\langle Q_{2}, Q_{3}\right\rangle \in o_{13,2}:[0,0,2, q-1] \Longleftrightarrow Q_{2} \in T_{U}\left(\mathcal{C}_{Q_{2}}\right)$ and $Q_{3} \notin T_{U}\left(\mathcal{C}_{Q_{3}}\right)$, and
- $\left\langle Q_{2}, Q_{3}\right\rangle \in o_{14}:[0,0,3, q-2] \Longleftrightarrow Q_{2} \notin T_{U}\left(\mathcal{C}_{Q_{2}}\right)$ and $Q_{3} \notin T_{U}\left(\mathcal{C}_{Q_{3}}\right)$.

ThE ORBITS Σ_{12}, Σ_{13} AND Σ_{14} :

- $\pi=\left\langle\right.$ Rep of $\left.o_{13,2}, Q_{1}\right\rangle ; Q_{1}=\nu(a, b, c) \rightarrow$ $\left\langle Q_{1}, Q_{i}\right\rangle \in o_{8,1}:[1,0,1, q-1]$ and thus $a, c \neq 0$

$$
\pi_{c}=\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right]
$$

- The cubic curve associated with π_{c} is:

$$
C_{c}=x\left(z^{2}+y z+c^{2} y^{2}\right)+y^{2} z .
$$

- The Hessian of C_{c} is:

$$
C_{c}^{\prime \prime}=x\left(z^{2}+y z+c^{2} y^{2}\right)+z^{3}+\left(1+c^{2}\right) y^{2} z+c^{2} y^{3} .
$$

- Let $y=1$ and $\theta=c^{-1} z$: inflexion points of C_{c} correspond to solutions of $\theta^{3}+\theta+c^{-1}=0$.
- Inflexion points of planes of $\operatorname{PG}(5, q)$ are inflexion points of their associated cubic curves in $\mathrm{PG}(2, q)$.

Cubic equations over $\mathbb{F}_{2^{h}}$, (Berlekamp, Rumsey, Solomon, 1966)

$$
\theta^{3}+\theta+c^{-1}=0
$$

- has three solutions if and only if $q \neq 4, \operatorname{Tr}(c)=\operatorname{Tr}(1)$ and c^{-1} is admissible: $c^{-1}=\frac{v+v^{-1}}{\left(1+v+v^{-1}\right)^{3}}$ for some $v \in \mathbb{F}_{q} \backslash \mathbb{F}_{4}$,
- a unique solution if and only if $\operatorname{Tr}(c) \neq \operatorname{Tr}(1)$ and
- no solution if and only if $\operatorname{Tr}(c)=\operatorname{Tr}(1)$ and c^{-1} is not admissible

Characterization:

- Three inflexions $\rightarrow \Sigma_{14} ; q \neq 4$.
- A unique inflexion point $\rightarrow \Sigma_{12}\left(q=2^{\text {even }}\right)$ or $\Sigma_{13}\left(q=2^{\text {odd }}\right)$.
- No inflexion points $\rightarrow \Sigma_{12}\left(q=2^{\text {odd }}\right)$ or $\Sigma_{13}\left(q=2^{\text {even }}\right)$.

The UnIQUENESS OF Σ_{14} :

$\Sigma_{14}:=$ the union of K-orbits of planes represented by π_{c} where $h>2, \operatorname{Tr}(c)=\operatorname{Tr}(1)$ and c^{-1} is admissible.

Proof:

Let L (the inflexion line) be parametrised by $(0,1,0),(0,0,1)$ and $(0,1,1)$ respectively and $Q_{a, b, c}=\nu(a, b, c)$. Then,

$$
\pi_{a, b, c}=\left\langle L, Q_{a, b, c}\right\rangle \in \Sigma_{14}
$$

If follows that $\left\langle Q_{a, b, c}, E_{i}\right\rangle \in o_{8,1} ; 1 \leq i \leq 3$, and thus $a, b, c \neq 0$.

$$
\pi_{b, c}:\left[\begin{array}{ccc}
x+y & b x & c x \\
b x & b^{2} x+y+z & b c x \\
c x & b c x & c^{2} x+z
\end{array}\right] .
$$

- $1+b+c=0, \rightarrow \#$.
- $1+b+c \neq 0, \mathscr{C}_{b, c}^{\prime \prime}=\mathcal{Z}\left(h_{b, c}\right), \alpha=\left(1+b^{2}+c^{2}\right)$ and $h_{b, c}=c^{2} \alpha^{5} x y^{2}+\alpha^{5} x z^{2}+c^{2}\left(1+b^{2}\right) \alpha y^{3}+\alpha\left(\left(1+b^{2}\right)+\alpha^{3}\left(b^{2}+\right.\right.$ $\left.\left.c^{2}\right)\right) y z^{2}+\alpha\left(c^{2}\left(b^{2}+c^{2}\right)+\alpha^{3}\left(1+b^{2}\right)\right) y^{2} z+\left(b^{2}+c^{2}\right) \alpha z^{3}$. Imposing the conditions: $E_{i} \in \mathscr{C}_{b, c}^{\prime \prime} ; 1 \leq i \leq 3$, implies that $c^{2}\left(1+b^{2}\right) \alpha=\left(b^{2}+c^{2}\right) \alpha=c^{2}\left(1+b^{2}\right) \alpha+\alpha\left(\left(1+b^{2}\right)+\right.$ $\left.\alpha^{3}\left(b^{2}+c^{2}\right)\right)+\alpha\left(c^{2}\left(b^{2}+c^{2}\right)+\alpha^{3}\left(1+b^{2}\right)\right)+\left(b^{2}+c^{2}\right) \alpha=0$. As $\alpha, c \neq 0$, we get $b=c=1$.

Conclusion:

$\Phi_{14}: \Sigma_{14} \longrightarrow o_{14}: \pi \mapsto L$ is a bijection.

UNIQUENESS OF Σ_{12}, Σ_{13} :

$q=2^{\text {even }}:$

- $\pi \in \Sigma_{12}$ has a unique inflexion point $\xrightarrow{\mathbb{F}_{q^{2}}} \pi\left(\mathbb{F}_{q^{2}}\right) \in \Sigma_{14} \longrightarrow$ $L\left(\mathbb{F}_{q^{2}}\right) \subset \mathrm{PG}\left(5, q^{2}\right)$ is the unique inflexion line in $\pi\left(\mathbb{F}_{q^{2}}\right) \longrightarrow$ $L_{s}=L\left(\mathbb{F}_{q^{2}}\right) \cap \pi \in\left\{o_{15}, o_{16,2}\right\}$. Since $o_{16,2}$ cannot split by extension, $L_{s} \in o_{15}$.
- $\Phi_{12}: \Sigma_{12} \longrightarrow o_{15}: \pi \mapsto L_{s}$ is a bijection ($o_{15}:[0,0,1, q]$).
- Similarly, we can extend our work to $\mathbb{F}_{q^{3}}$ to conclude Φ_{13} : $\Sigma_{13} \longrightarrow o_{17}: \pi \mapsto L_{s}$ is a bijection ($o_{17}:[0,0,0, q+1]$).

K-orbits of planes	Representatives	Point-OD	Condition(s)
Σ_{1}	$\left[\begin{array}{lll}x & y & \cdot \\ y & z & \cdot \\ \cdot & \cdot & \cdot\end{array}\right]$	$\left[q+1,1, q^{2}-1,0\right]$	
Σ_{2}	$\left[\begin{array}{ccc}x & \cdot & \cdot \\ \cdot & y & \cdot \\ \cdot & \cdot & z\end{array}\right]$	$\left[3,0,3 q-3, q^{2}-2 q+1\right]$	
Σ_{3}	$\left[\begin{array}{ccc}x & \cdot & z \\ \cdot & y & \cdot \\ z & \cdot & \cdot\end{array}\right]$	$\left[2,1,2 q-2, q^{2}-q\right]$	
Σ_{4}	$\left[\begin{array}{ccc}x & \cdot & z \\ \cdot & y & z \\ z & z & \cdot\end{array}\right]$	$\left[2,1,2 q-2, q^{2}-q\right]$	
Σ_{5}	$\left[\begin{array}{lll}x & . & z \\ \cdot & y & z \\ z & z & z\end{array}\right]$	$\left[2,0,2 q-2, q^{2}-q+1\right]$	
Σ_{6}	$\left[\begin{array}{cc}x & . \\ \cdot & y+c z \\ . & z\end{array}\right.$	$\left[1,0, q+1, q^{2}-1\right]$	$\operatorname{Tr}\left(c^{-1}\right)=1$
Σ_{7}	$\left[\begin{array}{lll}x & y & z \\ y & \cdot & \cdot \\ z & \cdot & \cdot\end{array}\right]$	$\left[1, q+1, q^{2}-1,0\right]$	
Σ_{8}	$\left[\begin{array}{lll}x & y & \cdot \\ y & \cdot & z \\ \cdot & z & \cdot\end{array}\right]$	$\left[1, q+1, q-1, q^{2}-q\right]$	

$$
\begin{aligned}
& \Sigma_{9} \quad\left[\begin{array}{lll}
x & y & \cdot \\
y & z & z \\
\cdot & z & \cdot \\
\cdot & \cdot & y \\
y & z & \cdot \\
\cdot & \cdot & z
\end{array}\right] \\
& {\left[1,1,2 q-1, q^{2}-q\right]} \\
& {\left[1,1,2 q-1, q^{2}-q\right]} \\
& \Sigma_{11}\left[\begin{array}{ccc}
x & y & \dot{c} \\
y & z & z \\
\cdot & z & x+z
\end{array}\right] \quad\left[1,1, q-1, q^{2}\right] \\
& \Sigma_{12}\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right] \quad\left[1,0, q+1, q^{2}-1\right] \quad \operatorname{Tr}(c)=1,(*) \\
& \Sigma_{13}\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & c^{2} \cdot \\
c x & \cdot & c^{2}+z
\end{array}\right] \quad\left[1,0, q-1, q^{2}+1\right] \quad \operatorname{Tr}(c)=0,(* *) \\
& \Sigma_{14}\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right] \quad\left[1,0, q \mp 1, q^{2} \pm 1\right] \quad \operatorname{Tr}(c)=\operatorname{Tr}(1), q \neq 4,(* * *) \\
& \Sigma_{14}^{\prime} \quad\left[\begin{array}{ccc}
x+z & z & z \\
z & y+z & z \\
z & z & y
\end{array}\right] \\
& {\left[1,0, q-1, q^{2}+1\right] \quad q=4} \\
& \Sigma_{15} \quad\left[\begin{array}{lll}
x & y & z \\
y & z & \cdot \\
z & \cdot & \cdot
\end{array}\right] \\
& {\left[1,1, q-1, q^{2}\right]}
\end{aligned}
$$

COMPARISON WITH THE q ODD CASE:

Rank-one nets of conics \nLeftarrow planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially.
$\pi_{6} \in \Sigma_{6}$ meets $\mathcal{V}\left(\mathbb{F}_{q}\right)$ in a unique point, however its associated net of conics \mathcal{N}_{6} defined by

$$
\alpha X_{0} X_{1}+\beta X_{0} X_{2}+\gamma\left(X_{1}^{2}+c X_{1} X_{2}+X_{2}^{2}\right)=0
$$

has $q+1$ pairs of real lines defined by the pencil

$$
\mathcal{Z}\left(X_{0} X_{1}, X_{0} X_{2}\right)\left(\in \Omega_{4}\right)
$$

and a unique pair of conjugate imaginary lines given by

$$
\mathcal{Z}\left(X_{1}^{2}+c X_{1} X_{2}+X_{2}^{2}\right)
$$

implying that \mathcal{N}_{6} is not a rank- 1 net of conics.

Planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially \Longleftrightarrow Nets of conics in $\operatorname{PG}(2, q)$ with a non-empty base.

To SUM UP:

1. There is an interesting interplay between tensors and geometric objects.
2. There are $15 K$-orbits of planes having at least one rank-1 point in $\operatorname{PG}(5, q)$ and 5 when $q=2$.
3. Unlike the q odd case, rank-one nets of conics \Longleftrightarrow planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, q even.
4. Planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially \Longleftrightarrow Nets of conics in $\mathrm{PG}(2, q)$ with a non-empty base.
5. Planes of type $\Sigma_{14}\left(\right.$ resp. $\left.\left\{\Sigma_{12}, \Sigma_{13}\right\}\right) \Longleftrightarrow$ Lines of type o_{14} (resp. $\left\{o_{15}, o_{17}\right\}$).
6. Remaining part of the classification: planes disjoint from $\mathcal{V}\left(\mathbb{F}_{q}\right)$, for all q.

Thank you!

References I

N．Alnajjarine，M．Lavrauw，T．Popiel，＂Solids in the space of the Veronese surface in even characteristic＂，Finite Fields and Their Applications．83，102068， 2022.

N．Alnajjarine and M．Lavrauw，＂A classification of planes intersecting the Veronese surface over finite fields of even order，＂ Designs，Codes and Cryptography．10．1007， 2023.
圊 M．Lavrauw and T．Popiel，＂The symmetric representation of lines in $\mathrm{PG}\left(\mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}\right) "$ ，Discrete Math．343，111775， 2020.

围 M．Lavrauw，T．Popiel and J．Sheekey，＂Nets of conics of rank one in PG（2，$q), q$ odd＂，J．Geom．111，36， 2020.

國 M．Lavrauw and J．Sheekey，＂Canonical forms of $2 \times 3 \times 3$ tensors over the real field，algebraically closed fields，and finite fields，＂Linear Algebra and its Applications．476， 2015.

