A contribution towards the classification of tensors in $\mathbb{F}_q^3 \otimes S^2 \mathbb{F}_q^3$, q even

Nour Alnajjarine (Joint work with Michel Lavrauw)

Sabancı University - Lebanese International University (University of Primorska)

Finite Geometry and Friends Vrije Universiteit Brussel

September 19, 2023

BASIC DEFINITIONS AND NOTATIONS

Let $V_1, ..., V_t$ be vector spaces over the field \mathbb{F}_q ; $dim(V_i) = m_i$.

- The *t*-order tensor product $V := V_1 \otimes ... \otimes V_t$ is defined as the set of multilinear functions from $V_1^{\vee} \times ... \times V_t^{\vee}$ into \mathbb{F}_q , where V_i^{\vee} is the dual space of V_i .
- Fundamental (pure or rank-1) tensors are tensors of the form $v_1 \otimes ... \otimes v_t$.
- The rank of a tensor $A \in V$ is the smallest integer r such that

$$A = \sum_{i=1}^{r} A_i \tag{1}$$

with each A_i a fundamental tensor of V.

QUESTIONS OF INTERESTS:

- ► Algorithms: given a tensor A, does there exist an algorithm that determines R(A) and decompose it as the sum of fundamental tensors?
- Classifications: can we determine orbits of tensors under some natural group actions:
 - G := Stabiliser in GL(V) of the set of rank-1 tensors.

Note:

- $Rank(A) = Rank(\lambda A)$ for $A \in V$ and $\lambda \in \mathbb{F}$.
- Determining the rank of tensors in $V \iff$ Determining the rank of points in PG(V).
- Example: $\mathrm{PG}(\mathbb{F}_q^2 \otimes \mathbb{F}_q^3 \otimes \mathbb{F}_q^3) \cong \mathrm{PG}(17, \mathbf{q}).$

KNOWN CLASSIFICATIONS:

► There are 5 G-orbits of (non-zero) Tensors in F²_q ⊗ F²_q ⊗ F²_q ⊗ F²_q [M. Lavrauw, J. Sheekey, 2014].

- ► There are 8 G-orbits of (non-zero) Tensors in
 ^P_q ⊗
 ^P_q ⊗
 ^P_q ⊗
 ^P_q ⊗
 ^P_q [M. Lavrauw, J. Sheekey, 2015].
- There are 17 *G*-orbits of (non-zero) Tensors in $\mathbb{F}_q^2 \otimes \mathbb{F}_q^3 \otimes \mathbb{F}_q^3$ [M. Lavrauw, J. Sheekey, 2015].

 $\mathbb{F}_q^3 \otimes \mathbb{F}_q^3 \otimes \mathbb{F}_q^3$:

q odd: progress has been made by classifying partially symmetric tensors in $\mathbb{F}_q^3 \otimes S^2 \mathbb{F}_q^3$ equivalent to planes of $\mathrm{PG}(5,q)$ containing at least one rank-1 point [M. Lavrauw, T. Popiel, J. Sheekey, 2020].

INTERESTING CONNECTIONS:

Tensors \iff Finite geometric objects

Tensors can represent:

- 1. subspaces of projective spaces,
- 2. algebraic varieties,
- 3. linear systems of hypersurfaces,
- 4. semifields,
- 5. arcs.

TENSORS AND ALGEBRAIC VARIETIES:

- Fundamental tensors in $PG(V) \iff$ Points of the Segre variety in PG(N, q), where $N = \prod dim(V_i) 1$.
- $\begin{aligned} \blacktriangleright \text{ Example: } \sigma_{1,2,2} &: \mathrm{PG}(\mathbb{F}_q^2) \times \mathrm{PG}(\mathbb{F}_q^3) \times \mathrm{PG}(\mathbb{F}_q^3) \longrightarrow \mathrm{PG}(17,q) \\ & (\langle v_1 \rangle, \langle v_2 \rangle, \langle v_3 \rangle) \mapsto \langle v_1 \otimes v_2 \otimes v_3 \rangle. \end{aligned}$
- Fundamental symmetric tensors in $PG(V = U \otimes ... \otimes U) \iff$ Points of the Veronese variety in PG(M, q), where $M = {\binom{t+dim(U)-1}{t}} - 1.$
- The Veronese surface: $\mathcal{V}(\mathbb{F}_q) \subset S_{2,2}(\mathbb{F}_q)$:

 $\nu: \operatorname{PG}(2,q) \longrightarrow \operatorname{PG}(5,q)$ $\langle (x_0, x_1, x_2) \rangle \mapsto (x_0^2, x_0 x_1, x_0 x_2, x_1^2, x_1 x_2, x_2^2).$

- K := Stabiliser of $\mathcal{V}(\mathbb{F}_q)$.
- Fundamental alternating tensors in $PG(V = U \otimes ... \otimes U) \iff$ Points of the Grassmann variety in PG(M, q), where $M = \binom{dim(U)}{t}$.

TENSORS AND SUBSPACES OF PG(5, q):

Subspaces of PG(5,q) are points in $PG(S^2\mathbb{F}_q^3 \otimes \mathbb{F}_q^r)$.

- $r = 1 \longrightarrow$ points,
- $\blacktriangleright \ r=2 \longrightarrow \text{lines},$
- ▶ $r = 3 \longrightarrow$ planes,
- ▶ $r = 4 \longrightarrow$ solids,
- ▶ $r = 5 \longrightarrow$ hyperplanes.

TENSORS AND LINEAR SYSTEM OF CONICS:

Linear systems of conics := Subspaces(PG(2-forms in the projective plane)).

Subspaces of PG(5, q) correspond to linear systems of conics in PG(2, q).

- a pencil of conic $\mathcal{P} = \langle C_1, C_2 \rangle$ corresponds to a solid of PG(5,q).
- a net of conics $\mathcal{N} = \langle C_1, C_2, C_3 \rangle$ corresponds to a plane of PG(5, q).
- a web of conics $\mathcal{W} = \langle C_1, C_2, C_3, C_4 \rangle$ corresponds to a line of PG(5, q).

Classifying linear systems of conics in $PG(2,q) \iff$ classifying subspaces of $PG(5,q) \iff$ classifying tensors in $PG(S^2\mathbb{F}_q^3 \otimes \mathbb{F}_q^r)$.

PREVIOUS RESULTS ON LINEAR SYSTEMS OF CONICS:

- Dickson (1908): Classified pencils of conics over \mathbb{F}_q , q odd.
- ► Wilson (1914): Incompletely classified rank-one nets of conics (nets with at least a //) over F_q, q odd.
- Campbell (1927): Incompletely classified pencils of conics over \mathbb{F}_q , *q* even.
- Campbell (1928): Incompletely classified nets of conics over \mathbb{F}_q , *q* even.

PREVIOUS RESULTS ON ORBITS OF SUBSPACES OF PG(5, q):

- ▶ points, hyperplanes, for all q: ✓
- ▶ lines, for all q: \checkmark (\implies solids, for q odd: \checkmark) [M. Lavrauw, T. Popiel, 2020]
- ▶ planes meeting V(F_q) non-trivially, for q odd: √ [M. Lavrauw, T. Popiel, J. Sheekey, 2020]
- solids, for q even:
 [N. Alnajjarine, M. Lavrauw, T. Popiel, 2022]

```
PG(5, odd) vs PG(5, even):
```

• **q odd:** \exists a polarity: the set of conic planes of $\mathcal{V}(\mathbb{F}_q) \rightarrow$ the set of tangent planes of $\mathcal{V}(\mathbb{F}_q)$.

 $\blacktriangleright \text{ lines} \stackrel{\text{polarity}}{\iff} \text{ solids.}$

$$\begin{split} & \mathcal{N} = \langle C_1, C_2, C_3 \rangle; C_1 = // \longrightarrow \\ & \pi = H_1 \cap H_2 \cap H_3 \xrightarrow{\text{polarity}} \\ & \pi' = \langle P_1, P_2, P_3 \rangle; P_1 \in \mathcal{V}(\mathbb{F}_q) \longrightarrow \\ & \text{Rank-one nets of conics} \iff \text{planes meeting } \mathcal{V}(\mathbb{F}_q) \\ & \text{non-trivially.} \end{split}$$

• q even: No such polarity \rightarrow

- ▶ lines $\stackrel{?}{\iff}$ solids.
- Rank-one nets of conics $\stackrel{?}{\iff}$ planes meeting $\mathcal{V}(\mathbb{F}_q)$ non-trivially.

Representation of Subspaces of PG(5, q):

 $\blacktriangleright \operatorname{PG}(5,q) = \langle \mathcal{V}(\mathbb{F}_q) \rangle.$

• Every point $x = (x_0, ..., x_5) \in PG(5, q)$ can be represented by

 $M_x = \begin{bmatrix} x_0 & x_1 - x_2 \\ x_1 & x_3 - x_4 \\ x_2 & x_4 - x_5 \end{bmatrix}$

► The plane in PG(5, q) spanned by the 1st three points of the standard frame is

$$\pi = \begin{bmatrix} x & y & z \\ y & . & . \\ z & . & . \end{bmatrix} := \{ \begin{bmatrix} x & y - z \\ y & 0 & 0 \\ z & 0 & 0 \end{bmatrix} : (x, y, z) \in \mathbb{F}_q^3; \ (x, y, z) \in \mathrm{PG}(2, q) \}.$$

Planes of PG(5,q) and cubic curves in PG(2,q)

 $\pi \longrightarrow C = \mathcal{Z}(\text{determinant of its matrix representation}).$

K-orbits invariants:

Let W be a subspace of PG(5,q), K:=Setwise stabiliser of $\mathcal{V}(\mathbb{F}_q)$ in PGL(6,q).

Let $U_1, U_2, ..., U_m$ denote the distinct K-orbits of r-spaces in PG(5, q).

► The **rank distribution of** *W* is

 $[r_1, r_2, r_3]$

where

 $r_i = \#$ of rank *i* points in *W*.

• The r-space orbit-distribution of W is

 $[u_1, u_2, \ldots, u_m],$

where

 $u_i = \#$ of r-spaces incident with W which belong to the orbit U_i .

PROPERTIES AND APPROACH:

- ► Approach: We study the possible Point-orbit distributions and discuss the possibility of planes with same Point-OD to split or not under the action of *K*.
- ► Lemma: Planes with rank distribution [1, 0, q² + q] and [2, r₂ < q, r₃] do not exist.
- ► Rank-2 points: The geometry associated with rank-1,2 points can help! ($\pi = \langle Q_1, Q_2, ? \rangle$, where $rank(Q_1) = 1$ and $rank(Q_2) = 2$).

Lines in PG(5,q), q even:

Orbits	Point-OD's : $[r_1, r_{2n}, r_{2s}, r_3]$
05	[2, 0, q - 1, 0]
06	[1, 1, q - 1, 0]
$0_{8,1}$	[1, 0, 1, q - 1]
08,2	[1, 1, 0, q-1]
09	[1, 0, 0, q]
o_{10}	[0, 0, q+1, 0]
$o_{12,1}$	[0, q + 1, 0, 0]
$o_{12,2}$	[0,1,q,0]
$o_{13,1}$	[0, 1, 1, q-1]
$o_{13,2}$	[0, 0, 2, q - 1]
o_{14}	[0, 0, 3, q - 2]
015	[0,0,1,q] = -
$o_{16,1}$	[0,1,0,q]
$o_{16,2}$	[0,0,1,q]
o_{17}	[0, 0, 0, q+1]

Table: K-orbits of lines in PG(5, q), q even [M. Lavrauw, T. Popiel, 2020].

The case $r_{2n} = 0$:

 $\pi = \langle Q_1, Q_2, Q_3 \rangle$: $rank(Q_1) = 1$, $rank(Q_i) = 2$, i = 2, 3, and $\pi \cap \mathcal{N} = \emptyset$.

- $\blacktriangleright \ \mathcal{C}_{Q_2} = \mathcal{C}_{Q_3}: \ Q_1 \in \mathcal{C}_{Q_2} \text{ or } Q_1 \notin \mathcal{C}_{Q_2} \to \Sigma_6.$
- $\blacktriangleright Q_1 = U = \mathcal{C}_{Q_2} \cap \mathcal{C}_{Q_3}.$
- $\blacktriangleright Q_1 \in \mathcal{C}_{Q_2} \setminus \mathcal{C}_{Q_3}.$
- $\blacktriangleright Q_1 \notin \mathcal{C}_{Q_2} \cup \mathcal{C}_{Q_3}:$
 - $\begin{array}{l} \blacktriangleright \quad \langle Q_2, Q_3 \rangle \in o_{13,2} : [0, 0, 2, q-1] \iff Q_2 \in T_U(\mathcal{C}_{Q_2}) \text{ and} \\ Q_3 \notin T_U(\mathcal{C}_{Q_3}), \text{ and} \end{array}$
 - $(Q_2, Q_3) \in o_{14} : [0, 0, 3, q-2] \iff Q_2 \notin T_U(\mathcal{C}_{Q_2}) \text{ and } Q_3 \notin T_U(\mathcal{C}_{Q_3}).$

The orbits Σ_{12}, Σ_{13} and Σ_{14} :

 $\begin{array}{l} \blacktriangleright \ \pi = \langle Rep \ of \ o_{13,2}, Q_1 \rangle; \ Q_1 = \nu(a,b,c) \rightarrow \\ \langle Q_1, Q_i \rangle \in o_{8,1}: [1,0,1,q-1] \ \text{and thus} \ a,c \neq 0 \end{array}$

$$\pi_c = \begin{bmatrix} x & y & cx \\ y & y+z & \\ cx & \cdot & c^2x+z \end{bmatrix}$$

• The cubic curve associated with π_c is:

$$C_c = x(z^2 + yz + c^2y^2) + y^2z.$$

• The Hessian of C_c is:

$$C_c'' = x(z^2 + yz + c^2y^2) + z^3 + (1 + c^2)y^2z + c^2y^3.$$

- Let y = 1 and $\theta = c^{-1}z$: inflexion points of C_c correspond to solutions of $\theta^3 + \theta + c^{-1} = 0$.
- Inflexion points of planes of PG(5, q) are inflexion points of their associated cubic curves in PG(2, q).

Cubic equations over \mathbb{F}_{2^h} , (Berlekamp, Rumsey, Solomon, 1966)

$$\theta^3 + \theta + c^{-1} = 0,$$

- ▶ has three solutions if and only if $q \neq 4$, Tr(c) = Tr(1) and c^{-1} is admissible: $c^{-1} = \frac{v+v^{-1}}{(1+v+v^{-1})^3}$ for some $v \in \mathbb{F}_q \setminus \mathbb{F}_4$,
- a unique solution if and only if $Tr(c) \neq Tr(1)$ and
- no solution if and only if Tr(c) = Tr(1) and c^{-1} is not admissible

Characterization:

- Three inflexions $\rightarrow \Sigma_{14}$; $q \neq 4$.
- A unique inflexion point $\rightarrow \Sigma_{12} \ (q = 2^{even}) \ or \ \Sigma_{13} \ (q = 2^{odd}).$
- No inflexion points $\rightarrow \Sigma_{12} \ (q = 2^{odd}) \ or \ \Sigma_{13} \ (q = 2^{even}).$

The uniqueness of Σ_{14} :

 Σ_{14} := the union of K-orbits of planes represented by π_c where h > 2, Tr(c) = Tr(1) and c^{-1} is admissible.

Proof:

Let L (the inflexion line) be parametrised by (0, 1, 0), (0, 0, 1) and (0, 1, 1) respectively and $Q_{a,b,c} = \nu(a, b, c)$. Then,

$$\pi_{a,b,c} = \langle L, Q_{a,b,c} \rangle \in \Sigma_{14}.$$

If follows that $\langle Q_{a,b,c}, E_i \rangle \in o_{8,1}$; $1 \le i \le 3$, and thus $a, b, c \ne 0$.

$$\pi_{b,c}:\begin{bmatrix} x+y & bx & cx \\ bx & b^2x+y+z & bcx \\ cx & bcx & c^2x+z \end{bmatrix}$$

$$\begin{array}{l} \bullet \quad 1+b+c=0, \to \#. \\ \bullet \quad 1+b+c\neq 0, \ \mathscr{C}_{b,c}''=\mathcal{Z}(h_{b,c}), \ \alpha=(1+b^2+c^2) \ \text{and} \\ h_{b,c}=c^2\alpha^5xy^2+\alpha^5xz^2+c^2(1+b^2)\alpha y^3+\alpha((1+b^2)+\alpha^3(b^2+c^2))yz^2+\alpha(c^2(b^2+c^2)+\alpha^3(1+b^2))y^2z+(b^2+c^2)\alpha z^3. \\ \text{Imposing the conditions:} \ E_i\in \mathscr{C}_{b,c}''; \ 1\leq i\leq 3, \ \text{implies that} \\ c^2(1+b^2)\alpha=(b^2+c^2)\alpha=c^2(1+b^2)\alpha+\alpha((1+b^2)+\alpha^3(b^2+c^2))+\alpha(c^2(b^2+c^2)+\alpha^3(1+b^2))+(b^2+c^2)\alpha=0. \\ \text{As } \alpha, c\neq 0, \ \text{we get } b=c=1. \end{array}$$

Conclusion:

 $\Phi_{14}: \Sigma_{14} \longrightarrow o_{14}: \pi \mapsto L$ is a bijection.

Uniqueness of Σ_{12}, Σ_{13} :

 $q = 2^{even}$:

- $\pi \in \Sigma_{12}$ has a unique inflexion point $\xrightarrow{\mathbb{F}_{q^2}} \pi(\mathbb{F}_{q^2}) \in \Sigma_{14} \longrightarrow L(\mathbb{F}_{q^2}) \subset \mathrm{PG}(5, q^2)$ is the unique inflexion line in $\pi(\mathbb{F}_{q^2}) \longrightarrow L_s = L(\mathbb{F}_{q^2}) \cap \pi \in \{o_{15}, o_{16,2}\}$. Since $o_{16,2}$ cannot split by extension, $L_s \in o_{15}$.
- $\Phi_{12}: \Sigma_{12} \longrightarrow o_{15}: \pi \mapsto L_s$ is a bijection $(o_{15}: [0, 0, 1, q])$.
- Similarly, we can extend our work to \mathbb{F}_{q^3} to conclude Φ_{13} : $\Sigma_{13} \longrightarrow o_{17} : \pi \mapsto L_s$ is a bijection $(o_{17} : [0, 0, 0, q + 1])$.

K-orbits of planes	Representatives	Point-OD	Condition(s)
Σ_1	$\begin{bmatrix} x & y & . \\ y & z & . \\ . & . & . \end{bmatrix}$	$[q+1, 1, q^2 - 1, 0]$	
Σ_2	$\begin{bmatrix} x & \cdot & \cdot \\ \cdot & y & \cdot \\ \cdot & \cdot & z \end{bmatrix}$	$[3, 0, 3q - 3, q^2 - 2q + 1]$	
Σ_3	$\begin{bmatrix} x & . & z \\ . & y & . \\ z & . & . \end{bmatrix}$	$[2, 1, 2q - 2, q^2 - q]$	
Σ_4	$\begin{bmatrix} x & \cdot & z \\ \cdot & y & z \\ z & z & \cdot \end{bmatrix}$	$[2, 1, 2q - 2, q^2 - q]$	
Σ_5	$\begin{bmatrix} x & \cdot & z \\ \cdot & y & z \\ z & z & z \end{bmatrix}$	$[2, 0, 2q - 2, q^2 - q + 1]$	
Σ_6	$\begin{bmatrix} x & \cdot \\ \cdot & y + cz \\ \cdot & z \end{bmatrix}$	$\begin{bmatrix} z \\ z \\ y \end{bmatrix} [1, 0, q+1, q^2 - 1]$	$Tr(c^{-1}) = 1$
Σ_7	$\begin{bmatrix} x & y & z \\ y & \cdot & \cdot \\ z & \cdot & \cdot \end{bmatrix}$	$[1, q+1, q^2 - 1, 0]$	
Σ_8	$\begin{bmatrix} x & y & . \\ y & . & z \\ . & z & . \end{bmatrix}$	$[1, q+1, q-1, q^2 - q]$	23 / 28

$$\begin{split} \Sigma_{9} & \begin{bmatrix} x & y & z \\ y & z & z \\ \cdot & z & \cdot \\ x & y & \cdot \\ y & z & z \\ \cdot & \cdot & z \end{bmatrix} & [1, 1, 2q - 1, q^{2} - q] \\ & [1, 1, 2q - 1, q^{2} - q] \\ \Sigma_{11} & \begin{bmatrix} x & y & z \\ y & z & z \\ \cdot & z & x + z \end{bmatrix} & [1, 1, q - 1, q^{2}] \\ & \Sigma_{12} & \begin{bmatrix} x & y & cx \\ y & y + z & c \\ cx & \cdot & c^{2}x + z \end{bmatrix} & [1, 0, q + 1, q^{2} - 1] & Tr(c) = 1, (*) \\ & \Sigma_{13} & \begin{bmatrix} x & y & cx \\ y & y + z & c \\ cx & \cdot & c^{2}x + z \end{bmatrix} & [1, 0, q - 1, q^{2} + 1] & Tr(c) = 0, (**) \\ & \Sigma_{14} & \begin{bmatrix} x & y & cx \\ y & y + z & c \\ cx & \cdot & c^{2}x + z \end{bmatrix} & [1, 0, q - 1, q^{2} \pm 1] & Tr(c) = Tr(1), q \neq 4, (***) \\ & \Sigma_{14} & \begin{bmatrix} x + z & z & z \\ z & y + z & c \\ z & z & z & y \end{bmatrix} & [1, 0, q - 1, q^{2} + 1] & q = 4 \\ & \Sigma_{15} & \begin{bmatrix} x & y & z \\ y & z & c \\ z & z & z \end{bmatrix} & [1, 1, q - 1, q^{2}] \\ & \end{bmatrix}$$

COMPARISON WITH THE q ODD CASE:

Rank-one nets of conics \iff planes meeting $\mathcal{V}(\mathbb{F}_q)$ non-trivially.

 $\pi_6 \in \Sigma_6$ meets $\mathcal{V}(\mathbb{F}_q)$ in a unique point, however its associated net of conics \mathcal{N}_6 defined by

$$\alpha X_0 X_1 + \beta X_0 X_2 + \gamma (X_1^2 + c X_1 X_2 + X_2^2) = 0$$

has q + 1 pairs of real lines defined by the pencil

 $\mathcal{Z}(X_0X_1, X_0X_2) \ (\in \Omega_4),$

and a unique pair of conjugate imaginary lines given by

 $\mathcal{Z}(X_1^2 + cX_1X_2 + X_2^2),$

implying that \mathcal{N}_6 is not a rank-1 net of conics.

Planes meeting $\mathcal{V}(\mathbb{F}_q)$ non-trivially \iff Nets of conics in $\mathrm{PG}(2,q)$ with a non-empty base.

TO SUM UP:

- 1. There is an interesting interplay between tensors and geometric objects.
- 2. There are 15 K-orbits of planes having at least one rank-1 point in PG(5, q) and 5 when q = 2.
- 3. Unlike the q odd case, rank-one nets of conics \iff planes meeting $\mathcal{V}(\mathbb{F}_q)$ non-trivially, q even.
- 4. Planes meeting $\mathcal{V}(\mathbb{F}_q)$ non-trivially \iff Nets of conics in $\mathrm{PG}(2,q)$ with a non-empty base.
- 5. Planes of type Σ_{14} (resp. $\{\Sigma_{12}, \Sigma_{13}\}$) \iff Lines of type o_{14} (resp. $\{o_{15}, o_{17}\}$).
- 6. Remaining part of the classification: planes disjoint from $\mathcal{V}(\mathbb{F}_q)$, for all q.

REFERENCES I

- N. Alnajjarine, M. Lavrauw, T. Popiel, "Solids in the space of the Veronese surface in even characteristic", *Finite Fields and Their Applications*. 83, 102068, 2022.
- N. Alnajjarine and M. Lavrauw, "A classification of planes intersecting the Veronese surface over finite fields of even order," *Designs, Codes and Cryptography.* 10.1007, 2023.
- M. Lavrauw and T. Popiel, "The symmetric representation of lines in $PG(\mathbb{F}_q^3 \otimes \mathbb{F}_q^3)$ ", *Discrete Math.* 343, 111775, 2020.
- M. Lavrauw, T. Popiel and J. Sheekey, "Nets of conics of rank one in PG(2, q), q odd", J. Geom. 111, 36, 2020.
- M. Lavrauw and J. Sheekey, "Canonical forms of $2 \times 3 \times 3$ tensors over the real field, algebraically closed fields, and finite fields," *Linear Algebra and its Applications*. 476, 2015.