Construction of self-orthogonal \mathbb{Z}_{2^k} -codes

Sara Ban

sban@math.uniri.hr

Faculty of Mathematics, University of Rijeka, Croatia

Joint work with Sanja Rukavina

This work has been fully supported by Croatian Science Foundation under the project 6732

2 Codes over \mathbb{Z}_{2^k}

Boolean and bent functions

Let \mathbb{F}_2 be the field of order 2.

A Boolean function on n variables is a mapping $f : \mathbb{F}_2^n \to \mathbb{F}_2$. The Walsh-Hadamard transformation of f is

$$W_f(v) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + \langle v, x \rangle}.$$

A *bent function* is a Boolean function f such that $W_f(v) = \pm 2^{\frac{n}{2}}$, for every $v \in \mathbb{F}_2^n$.

Generalized Boolean and gbent functions

Let \mathbb{Z}_{2^k} be the ring of integers modulo 2^k .

A generalized Boolean function on n variables is a mapping $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$. The generalized Walsh-Hadamard transformation of f is

$$ilde{f}(\mathbf{v}) = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \omega^{f(\mathbf{x})} (-1)^{\langle \mathbf{v}, \mathbf{x}
angle},$$

where $\omega = e^{\frac{2\pi i}{2^k}}$. A gbent function is a generalized Boolean function f such that $|\tilde{f}(v)| = 2^{\frac{n}{2}}$, for every $v \in \mathbb{F}_2^n$. Theorem (K. U. Schmidt, 2009) Let $n \ge 2$ be even, and let $a, b : \mathbb{F}_2^n \to \mathbb{F}_2$ be bent functions. Then $f : \mathbb{F}_2^{n+1} \to \mathbb{Z}_4$ given by

$$f(x,y)=2a(x)(1+y)+2b(x)y+y,\ x\in\mathbb{F}_2^n,y\in\mathbb{F}_2,$$

is a gbent function.

 \mathbb{Z}_{2^k} -codes

A \mathbb{Z}_{2^k} -code C of length n is an additive subgroup of $\mathbb{Z}_{2^k}^n$. An element of C is called a *codeword* of C. A code in which the circular shift of each codeword gives another codeword that belongs to the code is called a *cyclic code*. A *generator matrix* of C is a matrix whose rows generate C. Let C be a \mathbb{Z}_{2^k} -code of length n. The dual code C^{\perp} of the code C is defined as

$$C^{\perp} = \{ x \in \mathbb{Z}_{2^k}^n \mid \langle x, y \rangle = 0 \text{ for all } y \in C \},\$$

where $\langle x, y \rangle = x_1y_1 + x_2y_2 + \cdots + x_ny_n \pmod{2^k}$ for $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$. The code *C* is *self-orthogonal* if $C \subseteq C^{\perp}$.

Let
$$x = (x_1, x_2, ..., x_n) \in \mathbb{Z}_{2^k}^n$$
. The *Euclidean weight* of x is

$$wt_E(x) = \sum_{i=1}^n \min\{x_i^2, (2^k - x_i)^2\}.$$

Lemma (Bannai, Dougherty, Harada, Oura, 1999)

Let *M* be a generator matrix of a \mathbb{Z}_{2^k} -code *C* of length *n*. Suppose that the rows of *M* are codewords in $\mathbb{Z}_{2^k}^n$ with Euclidean weight a multiple of 2^{k+1} with any two rows orthogonal. Then *C* is a self-orthogonal code with all Euclidean weights a multiple of 2^{k+1} .

 O. S. ROTHAUS, On "Bent" Functions, J. Comb. Theory Ser. A 20 (1976), 300–305.

- C. CARLET, P. GABORIT, Hyper-bent functions and cyclic codes, J. Comb. Theory Ser. A 113(3) (2006), 466–482.
- C. TANG, N. LI, Y. QI, Z. ZHOU, T. HELLESETH, Linear Codes With Two or Three Weights From Weakly Regular Bent Functions, *IEEE Trans. Inform. Theory* **62**(3) (2016), 1166–1176.
- C. DING, A. MUNEMASA, V. D. TONCHEV, Bent Vectorial Functions, Codes and Designs, *IEEE Trans. Inform. Theory* **65**(11) (2019), 7533–7541.
- M. SHI, Y. LIU, H. RANDRIAMBOLOLONA, L. SOK, P. SOLÉ, Trace codes over Z₄, and Boolean functions, *Des. Codes Cryptogr.* 87 (2019), 1447–1455.

- A. K. SINGH, N. KUMAR, K. P. SHUM, Cyclic self-orthogonal codes over finite chain ring, *Asian-Eur. J. Math.* **11**(6) (2018), 1850078.
- B. KIM, Construction for self-orthogonal codes over a certain non-chain Frobenius ring, *J. Korean Math. Soc.* **59**(1) (2022), 193-204.
- B. KIM, N. HAN, Y. LEE, Self-orthogonal codes over Z₄ arising from the chain ring Z₄[u]/ ⟨u² + 1⟩, Finite Fields Appl. 78 (2022), 101972.

- SB, S. RUKAVINA, Type IV-II codes over Z₄ constructed from generalized bent functions, *Australas. J. Combin.* 84(3) (2022), 341–356.
- SB, S. RUKAVINA, Construction of self-orthogonal \mathbb{Z}_{2^k} -codes, submitted, 2023.

An $n \times n$ circulant matrix is a matrix of the form

[x ₀	x_{n-1}			<i>x</i> ₁]
x ₁	<i>x</i> 0	x_{n-1}		<i>x</i> ₂	
:				÷	
$\begin{bmatrix} x_{n-1} \end{bmatrix}$			<i>x</i> ₁	<i>x</i> ₀	

٠

 P. STANICA, T. MARTINSEN, S. GANGOPADHYAY, B. K. SINGH, Bent and generalized bent Boolean functions, *Des. Codes Cryptogr.* 69 (2013), 77–94.

Theorem 1 (SB, S. Rukavina, 2023)

Let $a, b, c : \mathbb{F}_2^n \to \mathbb{F}_2$ be Boolean functions and let $3 \le k \le n$. Let $g_k^{(\epsilon)} : \mathbb{F}_2^{n+2} \to \mathbb{Z}_{2^k}$ be a generalized Boolean function given by

$$g_k^{(\epsilon)}(x,y,z) = 2^{k-1}a(x) + (2^{k-1}b(x) + 1)y + (2^{k-1}c(x) + 1)z + 2\epsilon yz,$$

 $x \in \mathbb{F}_2^n, y, z \in \mathbb{F}_2$, where $\epsilon \in \{-1, 1\}$, and let $c_{g_k^{(\epsilon)}}$ be a codeword

$$(g_k^{(\epsilon)}((0,\ldots,0)),g_k^{(\epsilon)}((0,\ldots,0,1)),\ldots,g_k^{(\epsilon)}((1,\ldots,1)))\in \mathbb{Z}_{2^k}^{2^{n+2}}.$$

Let $C_{g_k^{(\epsilon)}}$ be a \mathbb{Z}_{2^k} -code generated by the $2^{n+2} \times 2^{n+2}$ circulant matrix whose first row is the codeword $c_{g_k^{(\epsilon)}}$. Then $C_{g_k^{(\epsilon)}}$ is a cyclic self-orthogonal \mathbb{Z}_{2^k} -code of length 2^{n+2} . If b = c, then all codewords in $C_{g_k^{(\epsilon)}}$ have Euclidean weights divisible by 2^{k+1} . An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$, with point set \mathcal{P} , block set \mathcal{B} and incidence \mathcal{I} is a *t*-(*v*, *k*, λ) *design*, if $|\mathcal{P}| = v$, every block $B \in \mathcal{B}$ is incident with precisely *k* points, and every *t* distinct points are together incident with precisely λ blocks.

If the condition

$$|B_i \cap B_j| \equiv |B_k| \equiv 0 \pmod{2}$$

is satisfied for all blocks B_i, B_j and B_k of \mathcal{D} , we say that \mathcal{D} is a *self-orthogonal design*.

A k-dimensional subspace of \mathbb{F}_2^n is called an [n, k] binary linear code. An element of a code is called a *codeword*.

The *support* of a codeword $x \in \mathbb{F}_2^n$ is the set of non-zero positions in x. The *weight* of a codeword $x \in \mathbb{F}_2^n$ is the number of non-zero coordinates in x. If the minimum weight d of an [n, k] binary linear code is known, then we refer to the code as an [n, k, d] binary linear code. The *binary residue code* of a \mathbb{Z}_{2^k} -code *C* is defined as

$$C^{(1)} = \{ c \pmod{2} \mid c \in C \}.$$

The binary residue code of the \mathbb{Z}_{2^k} -code $C_{g_k^{(\epsilon)}}$, constructed as in Theorem 1, is a $[2^{n+2}, 3, 2^{n+1}]$ binary linear code. The supports of the minimum weight codewords in $C_{g_k^{(\epsilon)}}^{(1)}$ form a self-orthogonal 1- $(2^{n+2}, 2^{n+1}, 3)$ design with 6 blocks and block intersection numbers 0 and 2^n .

Example 1

Let n = k = 3,

 $a(x_1, x_2, x_3) = 1, \ b(x_1, x_2, x_3) = c(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2$

and $\epsilon = -1$. Then

 $c_{g_3^{(-1)}} = 01540154411441140154411401544114 \in \mathbb{Z}_8^{32}$

and $C_{g_3^{(-1)}}$ is a cyclic self-orthogonal \mathbb{Z}_8 -code of length 32, where all codewords have Euclidean weights divisible by 16.

Proposition 1 (SB, S. Rukavina, 2022)

Let *n* be even, and let $a, b : \mathbb{F}_2^n \to \mathbb{F}_2$ be bent functions. Let $f : \mathbb{F}_2^{n+1} \to \mathbb{Z}_4$ be a gbent function given by $f(x, y) = 2a(x)(1+y) + 2b(x)y + y, x \in \mathbb{F}_2^n, y \in \mathbb{F}_2$, and let c_f be a codeword

$$(f((0,\ldots,0)),f((0,\ldots,0,1)),\ldots,f((1,\ldots,1)))\in\mathbb{Z}_4^{2^{n+1}}$$

Let C_f be a \mathbb{Z}_4 -code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword c_f . Then C_f is a cyclic self-orthogonal \mathbb{Z}_4 -code of length 2^{n+1} , all its codewords have Euclidean weights divisible by 8.

Theorem 2 (SB, S. Rukavina, 2023)

Let *n* be even, and let $a, b : \mathbb{F}_2^n \to \mathbb{F}_2$ be bent functions. Let $k \ge 3$ and let $f_k^{(\epsilon)} : \mathbb{F}_2^{n+1} \to \mathbb{Z}_{2^k}$ be a generalized Boolean function given by

$$f_k^{(\epsilon)}(x,y) = 2^{k-1}a(x) + (2^{k-1}a(x) + 2^{k-1}b(x) + 2^{k-2}\epsilon)y, \ x \in \mathbb{F}_2^n, y \in \mathbb{F}_2,$$

where $\epsilon \in \{-1, 1\}$. Let $c_{f_k^{(\epsilon)}}$ be a codeword

$$(f_k^{(\epsilon)}((0,\ldots,0)),f_k^{(\epsilon)}((0,\ldots,0,1)),\ldots,f_k^{(\epsilon)}((1,\ldots,1)))\in\mathbb{Z}_{2^k}^{2^{n+1}}.$$

Let $C_{f_k^{(\epsilon)}}$ be a \mathbb{Z}_{2^k} -code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword $c_{f_k^{(\epsilon)}}$. Then $C_{f_k^{(\epsilon)}}$ is a cyclic self-orthogonal \mathbb{Z}_{2^k} -code of length 2^{n+1} and all its codewords have Euclidean weights divisible by 2^{2k-1} .

Example 2

Let n = 2, k = 3,

$$a(x_1, x_2) = x_1x_2 + x_2, \ b(x_1, x_2) = x_1x_2 + x_1 + x_2$$

and $\epsilon = 1$. Then

$$c_{f_3^{(1)}} = 02460606 \in \mathbb{Z}_8^8$$

and $C_{f_3^{(1)}}$ is a cyclic self-orthogonal \mathbb{Z}_8 -code of length 8, all its codewords have Euclidean weights divisible by 32.

Theorem 3 (SB, S. Rukavina, 2023)

Let *n* be even, and let $a, b : \mathbb{F}_2^n \to \mathbb{F}_2$ be bent functions. Let $k \ge 3$ and let $h_k^{(\epsilon)} : \mathbb{F}_2^{n+1} \to \mathbb{Z}_{2^k}$ be a generalized Boolean function given by

$$h_k^{(\epsilon)}(x,y) = 2^{k-1}a(x) + (2^{k-1}b(x) + 2^{k-2}\epsilon)y, \ x \in \mathbb{F}_2^n, y \in \mathbb{F}_2,$$

where $\epsilon \in \{-1,1\}$, and let $c_{h_k^{(\epsilon)}}$ be a codeword

$$(h_k^{(\epsilon)}((0,\ldots,0)),h_k^{(\epsilon)}((0,\ldots,0,1)),\ldots,h_k^{(\epsilon)}((1,\ldots,1)))\in\mathbb{Z}_{2^k}^{2^{n+1}}.$$

Let $C_{h_k^{(\epsilon)}}$ be a \mathbb{Z}_{2^k} -code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword $c_{h_k^{(\epsilon)}}$. Then $C_{h_k^{(\epsilon)}}$ is cyclic self-orthogonal \mathbb{Z}_{2^k} -code of length 2^{n+1} and all codewords in $C_{h_k^{(\epsilon)}}$ have Euclidean weights divisible by 2^{k+1} .

Example 3

Let n = 2, k = 3,

$$a(x_1, x_2) = x_1x_2 + x_2, \ b(x_1, x_2) = x_1x_2 + x_1 + x_2$$

and $\epsilon = 1$. Then

$$c_{h_3^{(1)}} = 02420606 \in \mathbb{Z}_8^8$$

and $C_{h_3^{(1)}}$ is a cyclic self-orthogonal \mathbb{Z}_8 -code of length 8, all its codewords have Euclidean weights divisible by 16.

Thank you!