Line-free sets in \mathbb{F}_{p}^{n}

Jakob Führer fuehrer@math.tugraz.at

joint work with Christian Elsholtz, Erik Füredi, Benedek Kovács, Péter Pál Pach, Dániel Gábor Simon and Nóra Velich

Graz University of Technology

20.09.2023

20.09.2023 2

20.09.2023 2

Definition (progression-free sets)

Let (A, +) be an abelian group and $k \in \mathbb{N}$. A subset $L \subseteq A$ with |L| = k is called k-progression if there exist $a, b \in A$ such that

$$L = \{a + b \cdot i \mid i \in [0, k - 1]\}.$$

A subset $S \subseteq A$ is called *k*-progression-free if it does not contain any *k*-progression.

Definition (progression-free sets)

Let (A, +) be an abelian group and $k \in \mathbb{N}$. A subset $L \subseteq A$ with |L| = k is called k-progression if there exist $a, b \in A$ such that

$$L = \{a + b \cdot i \mid i \in [0, k - 1]\}.$$

A subset $S \subseteq A$ is called *k*-progression-free if it does not contain any *k*-progression.

Definition

Let (A, +) be an abelian group and $k \in \mathbb{N}$. Let $S := \{S \subseteq A \mid S \text{ is } k\text{-progression-free}\}$. We define

$$r_k(A) := \max_{S \in S} |S|.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

We call sets of the form $a + b\mathbb{F}_q = \{a + b \cdot i \mid i \in \mathbb{F}_q\}$ lines in \mathbb{F}_q^n .

イロト イポト イヨト イヨト

Definition

We call sets of the form $a + b\mathbb{F}_q = \{a + b \cdot i \mid i \in \mathbb{F}_q\}$ lines in \mathbb{F}_q^n .

Definition (no k on a line)

Let $k \in \mathbb{N}$. Let $S := \{S \subseteq \mathbb{F}_q^n \mid S \text{ does not contain } k \text{ points on a line}\}$. We define

$$\bar{r}_k(\mathbb{F}_q^n) := \max_{S\in\mathcal{S}} |S|.$$

.

• $\bar{r}_k(\mathbb{F}_p^n) \leq r_k(\mathbb{F}_p^n).$

・ 何 ト ・ ヨ ト ・ ヨ ト

• $\bar{r}_k(\mathbb{F}_p^n) \leq r_k(\mathbb{F}_p^n).$

• "order" does matter for Problem 1.

- E > - E >

- $\bar{r}_k(\mathbb{F}_p^n) \leq r_k(\mathbb{F}_p^n).$
- "order" does matter for Problem 1.
- Problem 1 can be studied in $(\mathbb{Z}/m\mathbb{Z})^n$ where *m* is no prime.

- $\bar{r}_k(\mathbb{F}_p^n) \leq r_k(\mathbb{F}_p^n).$
- "order" does matter for Problem 1.
- Problem 1 can be studied in $(\mathbb{Z}/m\mathbb{Z})^n$ where *m* is no prime.
- Problem 2 can be studied in \mathbb{F}_q^n where q is a prime power. Note that $\mathbb{F}_p^n \cong \mathbb{F}_p^{n\ell}$ as additive groups.

- $\bar{r}_k(\mathbb{F}_p^n) \leq r_k(\mathbb{F}_p^n).$
- "order" does matter for Problem 1.
- Problem 1 can be studied in $(\mathbb{Z}/m\mathbb{Z})^n$ where *m* is no prime.
- Problem 2 can be studied in \mathbb{F}_q^n where q is a prime power. Note that $\mathbb{F}_p^n \cong \mathbb{F}_p^{n\ell}$ as additive groups.
- $\bar{r}_{\rho}(\mathbb{F}_{\rho}^{n}) = r_{\rho}(\mathbb{F}_{\rho}^{n})$ and the two problems coincide.

Trivial Lower Bounds

イロト イヨト イヨト イヨト

Trivial Lower Bound

Theorem

Let $p \in \mathbb{P}$ and $n \in \mathbb{N}$. Then

$$r_p(\mathbb{F}_p^n) \ge (p-1)^n.$$

イロト イヨト イヨト イヨト

Lifting To Higher Dimensions

Theorem

Let $p \in \mathbb{P}$ and $n_1, n_2 \in \mathbb{N}$. Then

$$r_{\rho}(\mathbb{F}_{\rho}^{n_1+n_2}) \geq r_{\rho}(\mathbb{F}_m^{n_1})r_{\rho}(\mathbb{F}_m^{n_2}).$$

Lifting To Higher Dimensions

Theorem (Variation of Davis and Maclagan 2003) Let $p \in \mathbb{P}$. Then the limit

$$\alpha_{p,p} := \lim_{n \to \infty} (r_p(\mathbb{F}_p^n))^{1/n}$$

exists and it holds that

$$p-1 \leq \alpha_{p,p} \leq p.$$

Moreover, if S is an p-progression-free set in $\mathbb{F}_p^{n'}$ then

$$\alpha_{\boldsymbol{p},\boldsymbol{p}} \geq |\boldsymbol{S}|^{1/n'},$$

i.e.

$$r_p(\mathbb{F}_p^n) \ge (|S|^{1/n'} + o(1))^n.$$

Approach 1: Computer based results

\bullet	lacksquare	\bullet
\bullet	ullet	ullet

Approach 1: Computer based results

Theorem (E.F.F.K.P.S.V. 202?)

$$r_5(\mathbb{F}_5^3) \ge 70,$$

 $r_5(\mathbb{F}_5^n) \ge (4.121 + o(1))^n,$
 $r_7(\mathbb{F}_7^3) \ge 225,$
 $r_7(\mathbb{F}_7^n) \ge (6.082 + o(1))^n.$

Approach 2: Combinatorial constructions

Approach 2: Combinatorial constructions

Theorem (E.F.F.K.P.S.V. 202?)

Let $p \in \mathbb{P} \setminus \{2\}$. Then

$$r_p(\mathbb{Z}_p^3) \ge (p-1)^3 + p - 2\sqrt{p} + O(1).$$

A B A A B A

Approach 2: Combinatorial constructions

Theorem (E.F.F.K.P.S.V. 202?)

Let $p \in \mathbb{P} \setminus \{2\}$. Then

$$r_p(\mathbb{Z}_p^3) \ge (p-1)^3 + p - 2\sqrt{p} + O(1).$$

Theorem (E.F.F.K.P.S.V. 202?)

Let $p \in \mathbb{P} \setminus \{2\}$. Then $r_p(\mathbb{F}_p^n) \ge (p-1)^n + rac{n-2}{2} \cdot (p-1)(p-2)^{n-3}$

· · · · · · · · ·

Approach 3: Algebraic constructions

Use zero-sets of polynomials.

< ∃ > < ∃

Approach 3: Algebraic constructions

Use zero-sets of polynomials.

Theorem (F. 202?)

Let q be a prime power and $k \in \mathbb{N}$ such that $k \leq q$ then

$$\overline{r}_k\left(\mathbb{F}_q^{(k^2-k)/2}
ight)\geq q^{(k^2-k)/2-1}.$$

In particular,

$$r_p(\mathbb{F}_p^n) \geq \left(p^{1-rac{2}{p^2-p}}+o(1)
ight)^n,$$

and

$$r_p(\mathbb{F}_p^n)=\left(p+o(1)\right)^n,$$

when both n and p tend to infinity.

