Construction of *m*-ovoids of $Q^+(7, q)$ with q odd

Giovanni Giuseppe Grimaldi

joint work with Sam Adriaensen, Jan De Beule and Jonathan Mannaert

Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli Studi di Napoli Federico II

Finite Geometry and Friends Brussels, 18–22 September 2023

$$eta:(m{v},m{v}')\inm{V} imesm{V}\mapstoeta(m{v},m{v}')\in\mathbb{F}$$

is a σ -sesquilinear form on V if

$$eta:(m{v},m{v}')\inm{V} imesm{V}\mapstoeta(m{v},m{v}')\in\mathbb{F}$$

is a σ -sesquilinear form on V if

1

$$eta:(oldsymbol{v},oldsymbol{v}')\in oldsymbol{V} imesoldsymbol{V}\mapstoeta(oldsymbol{v},oldsymbol{v}')\in\mathbb{F}$$

is a σ -sesquilinear form on V if

•
$$\beta(v + v', v'') = \beta(v, v'') + \beta(v', v''), \quad \beta(av, v') = a\beta(v, v')$$

• $\beta(v, v' + v'') = \beta(v, v') + \beta(v, v''), \quad \beta(v, av') = a^{\sigma}\beta(v, v')$
For any $v, v', v'' \in V, a \in \mathbb{F}$.

$$eta:(m{v},m{v}')\inm{V} imesm{V}\mapstoeta(m{v},m{v}')\in\mathbb{F}$$

is a σ -sesquilinear form on V if

•
$$\beta(v + v', v'') = \beta(v, v'') + \beta(v', v''), \quad \beta(av, v') = a\beta(v, v')$$

• $\beta(v, v' + v'') = \beta(v, v') + \beta(v, v''), \quad \beta(v, av') = a^{\sigma}\beta(v, v')$
For any $v, v', v'' \in V, a \in \mathbb{F}$.
f $\sigma = 1$, then β is a **bilinear form on** V .

$$eta:(m{v},m{v}')\inm{V} imesm{V}\mapstoeta(m{v},m{v}')\in\mathbb{F}$$

is a σ -sesquilinear form on V if

• $\beta(v + v', v'') = \beta(v, v'') + \beta(v', v''), \quad \beta(av, v') = a\beta(v, v')$ • $\beta(v, v' + v'') = \beta(v, v') + \beta(v, v''), \quad \beta(v, av') = a^{\sigma}\beta(v, v')$ for any $v, v', v'' \in V, a \in \mathbb{F}$. If $\sigma = 1$, then β is a **bilinear form on** V. A σ -sesquilinear form β on V is **reflexive** if for any $u, v \in V$

$$\beta(u,v)=0 \Longleftrightarrow \beta(v,u)=0.$$

$$eta:(m{v},m{v}')\inm{V} imesm{V}\mapstoeta(m{v},m{v}')\in\mathbb{F}$$

is a σ -sesquilinear form on V if

•
$$\beta(v + v', v'') = \beta(v, v'') + \beta(v', v''), \quad \beta(av, v') = a\beta(v, v')$$

• $\beta(v, v' + v'') = \beta(v, v') + \beta(v, v''), \quad \beta(v, av') = a^{\sigma}\beta(v, v')$
For any $v, v', v'' \in V, a \in \mathbb{F}$.
f $\sigma = 1$, then β is a **bilinear form on** V .
A σ -sesquilinear form β on V is **reflexive** if for any $u, v \in V$

$$\beta(u,v)=0 \Longleftrightarrow \beta(v,u)=0.$$

A σ -sesquilinear form β is **non-degenerate** if it has the following property:

$$\beta(u, v) = 0$$
 for any $v \in V \Longrightarrow u = 0$.

Now, assume that β is a non-degenerate, reflexive σ -sesquilinear form on $V = \mathbb{F}^{d+1}$.

$$\bot: \mathcal{P} = \langle u \rangle \in \mathrm{PG}(d,\mathbb{F}) \mapsto \mathcal{P}^{\bot} = \{ \langle v \rangle : \beta(u,v) = 0 \} \in \mathrm{PG}(d,\mathbb{F})^*,$$

$$\bot: \mathcal{P} = \langle u \rangle \in \mathrm{PG}(d,\mathbb{F}) \mapsto \mathcal{P}^{\bot} = \{ \langle v \rangle : \beta(u,v) = 0 \} \in \mathrm{PG}(d,\mathbb{F})^*,$$

where $PG(d, \mathbb{F})^*$ denotes the dual space of $PG(d, \mathbb{F})$.

$$\bot: \mathcal{P} = \langle u \rangle \in \mathrm{PG}(d,\mathbb{F}) \mapsto \mathcal{P}^{\bot} = \{ \langle v \rangle : \beta(u,v) = 0 \} \in \mathrm{PG}(d,\mathbb{F})^*,$$

where $PG(d, \mathbb{F})^*$ denotes the dual space of $PG(d, \mathbb{F})$. A polarity maps points into hyperplanes of $PG(d, \mathbb{F})$.

$$\bot: \mathcal{P} = \langle u \rangle \in \operatorname{PG}(d, \mathbb{F}) \mapsto \mathcal{P}^{\bot} = \{ \langle v \rangle : \beta(u, v) = 0 \} \in \operatorname{PG}(d, \mathbb{F})^*,$$

where $PG(d, \mathbb{F})^*$ denotes the dual space of $PG(d, \mathbb{F})$. A polarity maps points into hyperplanes of $PG(d, \mathbb{F})$. For any *k*-dimensional subspace $S = \langle P_0, P_1, \dots, P_k \rangle$ of $PG(d, \mathbb{F})$,

$$\bot: \mathcal{P} = \langle u \rangle \in \operatorname{PG}(d, \mathbb{F}) \mapsto \mathcal{P}^{\bot} = \{ \langle v \rangle : \beta(u, v) = 0 \} \in \operatorname{PG}(d, \mathbb{F})^*,$$

where $PG(d, \mathbb{F})^*$ denotes the dual space of $PG(d, \mathbb{F})$. A polarity maps points into hyperplanes of $PG(d, \mathbb{F})$. For any *k*-dimensional subspace $S = \langle P_0, P_1, \ldots, P_k \rangle$ of $PG(d, \mathbb{F})$, we define the subspace

$$S^{\perp} = P_0^{\perp} \cap P_1^{\perp} \cap \ldots \cap P_k^{\perp}$$

having dimension d - k - 1.

Let \mathbb{F}_q be the finite field with $q = p^h$ elements, p prime and $h \ge 1$.

Definition

A subspace S of PG(d, q) is **totally isotropic** with respect to \bot if $S \subset S^{\bot}$.

Definition

A subspace S of PG(d, q) is **totally isotropic** with respect to \bot if $S \subset S^{\bot}$. A **finite classical polar space** \mathcal{P} is the set of subspaces of PG(d, q) that are totally isotropic with respect to \bot .

Definition

A subspace S of PG(d, q) is **totally isotropic** with respect to \bot if $S \subset S^{\bot}$. A **finite classical polar space** \mathcal{P} is the set of subspaces of PG(d, q) that are totally isotropic with respect to \bot .

A *k*-space of \mathcal{P} is a *k*-dimensional totally isotropic projective subspace of PG(d, q).

Definition

A subspace S of PG(d, q) is **totally isotropic** with respect to \bot if $S \subset S^{\bot}$. A **finite classical polar space** \mathcal{P} is the set of subspaces of PG(d, q) that are totally isotropic with respect to \bot .

A *k*-space of \mathcal{P} is a *k*-dimensional totally isotropic projective subspace of PG(d, q).

A generator of \mathcal{P} is a maximum totally isotropic subspace of PG(d, q), i.e. a totally isotropic subspace which is not contained in a larger totally isotropic subspace.

Definition

A subspace S of PG(d, q) is **totally isotropic** with respect to \bot if $S \subset S^{\bot}$. A **finite classical polar space** \mathcal{P} is the set of subspaces of PG(d, q) that are totally isotropic with respect to \bot .

A k-space of \mathcal{P} is a k-dimensional totally isotropic projective subspace of PG(d, q).

A generator of \mathcal{P} is a maximum totally isotropic subspace of PG(d, q), i.e. a totally isotropic subspace which is not contained in a larger totally isotropic subspace.

Two maximum totally isotropic subspaces of PG(d, q) have the same dimension r-1 and the integer r is called **rank of** \mathcal{P} .

Let \mathcal{P} be a finite classical polar space of rank r.

Let \mathcal{P} be a finite classical polar space of rank r. If x is the number of generators through a fixed (r - 2)-space of \mathcal{P} ,

Let \mathcal{P} be a finite classical polar space of rank r. If x is the number of generators through a fixed (r - 2)-space of \mathcal{P} , we will say that \mathcal{P} has **parameter** $e = \log_{a}(x - 1)$.

Let \mathcal{P} be a finite classical polar space of rank r. If x is the number of generators through a fixed (r-2)-space of \mathcal{P} , we will say that \mathcal{P} has **parameter** $e = \log_q(x-1)$. The symbol $\mathcal{P}_{r,e}$ will denote a finite classical polar space of rank r and

parameter e.

Let \mathcal{P} be a finite classical polar space of rank r. If x is the number of generators through a fixed (r - 2)-space of \mathcal{P} , we will say that \mathcal{P} has **parameter** $e = \log_q(x - 1)$.

The symbol $\mathcal{P}_{r,e}$ will denote a finite classical polar space of rank r and parameter e.

There exist five different types of finite classical polar spaces of rank r and parameter e and they have the following canonical forms:

Let \mathcal{P} be a finite classical polar space of rank r. If x is the number of generators through a fixed (r - 2)-space of \mathcal{P} , we will say that \mathcal{P} has **parameter** $e = \log_{a}(x - 1)$.

The symbol $\mathcal{P}_{r,e}$ will denote a finite classical polar space of rank r and parameter e.

There exist five different types of finite classical polar spaces of rank r and parameter e and they have the following canonical forms:

• elliptic quadric of PG(2r+1, q), e = 2,

$$Q^{-}(2r+1,q):X_0X_1+\ldots+X_{2r-2}X_{2r-1}+f(X_{2r},X_{2r+1})=0$$

where f is a homogeneous irreducible polynomial of degree 2 over \mathbb{F}_q .

Let \mathcal{P} be a finite classical polar space of rank r. If x is the number of generators through a fixed (r - 2)-space of \mathcal{P} , we will say that \mathcal{P} has **parameter** $e = \log_{q}(x - 1)$.

The symbol $\mathcal{P}_{r,e}$ will denote a finite classical polar space of rank r and parameter e.

There exist five different types of finite classical polar spaces of rank r and parameter e and they have the following canonical forms:

• elliptic quadric of PG(2r+1, q), e = 2,

$$Q^{-}(2r+1,q):X_{0}X_{1}+\ldots+X_{2r-2}X_{2r-1}+f(X_{2r},X_{2r+1})=0$$

where f is a homogeneous irreducible polynomial of degree 2 over \mathbb{F}_q . • parabolic quadric of PG(2r, q), e = 1,

$$Q(2r,q): X_0X_1 + \ldots + X_{2r-2}X_{2r-1} + X_{2r}^2 = 0.$$

• hyperbolic quadric of PG(2r - 1, q), e = 0,

$$Q^+(2r-1,q): X_0X_1+\ldots+X_{2r-2}X_{2r-1}=0.$$

• hyperbolic quadric of PG(2r - 1, q), e = 0,

$$Q^+(2r-1,q): X_0X_1+\ldots+X_{2r-2}X_{2r-1}=0.$$

• symplectic polar space W(2r-1, q) of PG(2r-1, q), e = 1, defined by the following canonical reflexive, non-degenerate bilinear form

$$\beta(u,v) = u_0v_1 - u_1v_0 + \ldots + u_{2r-2}v_{2r-1} - u_{2r-1}v_{2r-2}.$$

• hyperbolic quadric of PG(2r - 1, q), e = 0,

$$Q^+(2r-1,q): X_0X_1+\ldots+X_{2r-2}X_{2r-1}=0.$$

 symplectic polar space W(2r − 1, q) of PG(2r − 1, q), e = 1, defined by the following canonical reflexive, non-degenerate bilinear form

$$\beta(u,v) = u_0v_1 - u_1v_0 + \ldots + u_{2r-2}v_{2r-1} - u_{2r-1}v_{2r-2}.$$

• Hermitian variety of $PG(d, q^2)$

$$H(d, q^2): X_0^{q+1} + \ldots + X_d^{q+1} = 0$$

with $(d, e) \in \{(2r - 1, 1/2), (2r, 3/2)\}.$

The number of points of $\mathcal{P}_{r,e}$ is given by

$$\frac{(q^r-1)(q^{r+e-1}+1)}{q-1}$$

The number of points of $\mathcal{P}_{r,e}$ is given by

$$\frac{(q^r-1)(q^{r+e-1}+1)}{q-1}$$

Definition

A set of points \mathcal{O} of $\mathcal{P}_{r,e}$ is an *m*-**ovoid** if each generator of $\mathcal{P}_{r,e}$ meets \mathcal{O} in exactly *m* points.

The number of points of $\mathcal{P}_{r,e}$ is given by

$$\frac{(q^r-1)(q^{r+e-1}+1)}{q-1}$$

Definition

A set of points \mathcal{O} of $\mathcal{P}_{r,e}$ is an *m*-**ovoid** if each generator of $\mathcal{P}_{r,e}$ meets \mathcal{O} in exactly *m* points.

Proposition

The number of points of an m-ovoids \mathcal{O} of $\mathcal{P}_{r,e}$ is given by

 $m(q^{r+e-1}+1).$

The number of points of $\mathcal{P}_{r,e}$ is given by

$$\frac{(q^r-1)(q^{r+e-1}+1)}{q-1}$$

Definition

A set of points \mathcal{O} of $\mathcal{P}_{r,e}$ is an *m*-**ovoid** if each generator of $\mathcal{P}_{r,e}$ meets \mathcal{O} in exactly *m* points.

Proposition

The number of points of an m-ovoids \mathcal{O} of $\mathcal{P}_{r,e}$ is given by

$$m(q^{r+e-1}+1).$$

An *m*-ovoid \mathcal{O} of $\mathcal{P}_{r,e}$ is **trivial** if m = 0 or $m = \frac{q^r-1}{q-1}$.

The number of points of $\mathcal{P}_{r,e}$ is given by

$$\frac{(q^r-1)(q^{r+e-1}+1)}{q-1}$$

Definition

A set of points \mathcal{O} of $\mathcal{P}_{r,e}$ is an *m*-**ovoid** if each generator of $\mathcal{P}_{r,e}$ meets \mathcal{O} in exactly *m* points.

Proposition

The number of points of an m-ovoids \mathcal{O} of $\mathcal{P}_{r,e}$ is given by

$$m(q^{r+e-1}+1).$$

An *m*-ovoid \mathcal{O} of $\mathcal{P}_{r,e}$ is **trivial** if m = 0 or $m = \frac{q'-1}{q-1}$. The disjoint union of an *m*-ovoid and an *m*'-ovoid is an (m + m')-ovoid.
Proposition

The number of points of $\mathcal{P}_{r,e}$ is given by

$$\frac{(q^r-1)(q^{r+e-1}+1)}{q-1}$$

Definition

A set of points \mathcal{O} of $\mathcal{P}_{r,e}$ is an *m*-**ovoid** if each generator of $\mathcal{P}_{r,e}$ meets \mathcal{O} in exactly *m* points.

Proposition

The number of points of an m-ovoids \mathcal{O} of $\mathcal{P}_{r,e}$ is given by

$$m(q^{r+e-1}+1).$$

An *m*-ovoid \mathcal{O} of $\mathcal{P}_{r,e}$ is **trivial** if m = 0 or $m = \frac{q^r - 1}{q - 1}$. The disjoint union of an *m*-ovoid and an *m*'-ovoid is an (m + m')-ovoid. The complement of an *m*-ovoid is a $(\frac{q^r - 1}{q - 1} - m)$ -ovoid.

Intersection patterns for *m*-ovoids of $Q^-(2n+1,q)$

Intersection patterns for *m*-ovoids of $Q^{-}(2n+1,q)$

Proposition (Adriaensen, De Beule, G., Mannaert - Preprint)

Suppose that \mathcal{O} is an m-ovoid of $Q^-(2n+1,q)$, with $m \ge 1$. Then any elliptic quadric $Q^-(2n-1,q) \subset Q^-(2n+1,q)$ meets \mathcal{O} in either

$$(m-2)q^{n-1} + m$$
 or $(m-1)q^{n-1} + m$ or $mq^{n-1} + m$

points, and all of these cases occur.

Intersection patterns for *m*-ovoids of $Q^{-}(2n+1,q)$

Proposition (Adriaensen, De Beule, G., Mannaert - Preprint)

Suppose that \mathcal{O} is an m-ovoid of $Q^{-}(2n + 1, q)$, with $m \ge 1$. Then any elliptic quadric $Q^{-}(2n - 1, q) \subset Q^{-}(2n + 1, q)$ meets \mathcal{O} in either

$$(m-2)q^{n-1} + m$$
 or $(m-1)q^{n-1} + m$ or $mq^{n-1} + m$

points, and all of these cases occur.

Corollary (Adriaensen, De Beule, G., Mannaert - Preprint)

An m-ovoid \mathcal{O} of $Q^-(2n+1,q)$, $m \ge 1$, has non-empty intersection with any $Q^-(2n-1,q) \subset Q^-(2n+1,q)$.

Intersection patterns for *m*-ovoids of $Q^{-}(2n+1,q)$

Proposition (Adriaensen, De Beule, G., Mannaert - Preprint)

Suppose that \mathcal{O} is an m-ovoid of $Q^{-}(2n + 1, q)$, with $m \ge 1$. Then any elliptic quadric $Q^{-}(2n - 1, q) \subset Q^{-}(2n + 1, q)$ meets \mathcal{O} in either

$$(m-2)q^{n-1} + m$$
 or $(m-1)q^{n-1} + m$ or $mq^{n-1} + m$

points, and all of these cases occur.

Corollary (Adriaensen, De Beule, G., Mannaert - Preprint)

An m-ovoid \mathcal{O} of $Q^-(2n+1,q)$, $m \ge 1$, has non-empty intersection with any $Q^-(2n-1,q) \subset Q^-(2n+1,q)$.

Corollary (Adriaensen, De Beule, G., Mannaert - Preprint)

Let \mathcal{O} be an m-ovoid of $Q^{-}(2n+1,q)$, $m \geq 1$. If \mathcal{O} contains an elliptic quadric $Q^{-}(2n-1,q)$, then $\mathcal{O} = Q^{-}(2n+1,q)$.

Construction of *m*-ovoids of $Q^+(7, q)$ with q odd

Theorem (B. Segre - 1965)

Let \mathcal{O} be a non-trivial m-ovoid of $Q^{-}(5,q)$, then q is odd and m = (q+1)/2.

Theorem (B. Segre - 1965)

Let \mathcal{O} be a non-trivial m-ovoid of $Q^{-}(5,q)$, then q is odd and m = (q+1)/2.

Segre constructed an example of a 2-ovoid of $Q^{-}(5,3)$.

Theorem (B. Segre - 1965)

Let \mathcal{O} be a non-trivial m-ovoid of $Q^{-}(5,q)$, then q is odd and m = (q+1)/2.

Segre constructed an example of a 2-ovoid of $Q^{-}(5,3)$. Cossidente and Penttila (2005) constructed examples of (q + 1)/2-ovoids of $Q^{-}(5,q)$ for any q odd, generalizing Segre's example.

Theorem (B. Segre - 1965)

Let \mathcal{O} be a non-trivial m-ovoid of $Q^{-}(5, q)$, then q is odd and m = (q+1)/2.

Segre constructed an example of a 2-ovoid of $Q^{-}(5,3)$. Cossidente and Penttila (2005) constructed examples of (q + 1)/2-ovoids of $Q^{-}(5,q)$ for any q odd, generalizing Segre's example.

Proposition (Adriaensen, De Beule, G., Mannaert - Preprint)

Assume that q is odd. Consider $Q^+(7,q)$ and suppose that π_1 and π_2 are 5-dimensional subspaces in PG(7,q) such that $dim(\pi_1 \cap \pi_2) = 3$. Suppose both π_1 and π_2 intersect $Q^+(7,q)$ in an elliptic quadric $Q^-(5,q)$, say Q_1 and Q_2 respectively. Then there exists a collineation Φ of PG(7,q) such that Q_1 is mapped into Q_2 and the set $Q_1 \cap Q_2$ is pointwised fixed.

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$.

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$. It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that:

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$.

It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that:

Q $Q_1 := \pi_1 \cap Q^+(7,q)$ and $Q_2 := \pi_2 \cap Q^+(7,q)$ are two $Q^-(5,q)$,

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$.

It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that:

- **0** $Q_1 := \pi_1 \cap Q^+(7,q)$ and $Q_2 := \pi_2 \cap Q^+(7,q)$ are two $Q^-(5,q)$,
- 2 dim $(\pi_1 \cap \pi_2) = 3$ and $\pi_1 \cap \pi_2 \cap Q^+(7, q) = Q_1 \cap Q_2$ is a $Q^-(3, q)$.

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$.

It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that:

0 $Q_1 := \pi_1 \cap Q^+(7,q)$ and $Q_2 := \pi_2 \cap Q^+(7,q)$ are two $Q^-(5,q)$,

2 dim $(\pi_1 \cap \pi_2) = 3$ and $\pi_1 \cap \pi_2 \cap Q^+(7, q) = Q_1 \cap Q_2$ is a $Q^-(3, q)$.

Now let Φ be a collineation of PG(7, q) that maps Q_1 into Q_2 and that fixes $Q_1 \cap Q_2$ pointwise.

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an movoid of $Q^+(7,q)$. It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that: Q₁ := $\pi_1 \cap Q^+(7,q)$ and $Q_2 := \pi_2 \cap Q^+(7,q)$ are two $Q^-(5,q)$, dim $(\pi_1 \cap \pi_2) = 3$ and $\pi_1 \cap \pi_2 \cap Q^+(7,q) = Q_1 \cap Q_2$ is a $Q^-(3,q)$.

Now let Φ be a collineation of PG(7, q) that maps Q_1 into Q_2 and that fixes $Q_1 \cap Q_2$ pointwise. Let \mathcal{O}_1 be a (q+1)/2-ovoid of Q_1 .

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$.

It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that:

9 $Q_1 := \pi_1 \cap Q^+(7,q)$ and $Q_2 := \pi_2 \cap Q^+(7,q)$ are two $Q^-(5,q)$,

2 dim $(\pi_1 \cap \pi_2) = 3$ and $\pi_1 \cap \pi_2 \cap Q^+(7, q) = Q_1 \cap Q_2$ is a $Q^-(3, q)$.

Now let Φ be a collineation of PG(7, q) that maps Q_1 into Q_2 and that fixes $Q_1 \cap Q_2$ pointwise. Let \mathcal{O}_1 be a (q+1)/2-ovoid of Q_1 . Then, $\Phi(\mathcal{O}_1)$ is a (q+1)/2-ovoid of Q_2 , hence its complement $\mathcal{O}_2 := Q_2 \setminus \Phi(\mathcal{O}_1)$ is again a (q+1)/2-ovoid.

There exist (q + 1)-ovoids in $Q^+(7, q)$, q odd, which are the union of two (q + 1)/2-ovoids contained in distinct elliptic quadrics $Q^-(5, q)$.

Sketch of the proof. Any m-ovoid of $Q^-(5,q) \subset Q^+(7,q)$ is also an m-ovoid of $Q^+(7,q)$.

It is possible to choose two 5-dim subspaces $\pi_1 \neq \pi_2$ in such as way that:

9
$$Q_1 := \pi_1 \cap Q^+(7,q)$$
 and $Q_2 := \pi_2 \cap Q^+(7,q)$ are two $Q^-(5,q)$,

2 dim $(\pi_1 \cap \pi_2) = 3$ and $\pi_1 \cap \pi_2 \cap Q^+(7, q) = Q_1 \cap Q_2$ is a $Q^-(3, q)$.

Now let Φ be a collineation of PG(7, q) that maps Q_1 into Q_2 and that fixes $Q_1 \cap Q_2$ pointwise. Let \mathcal{O}_1 be a (q+1)/2-ovoid of Q_1 . Then, $\Phi(\mathcal{O}_1)$ is a (q+1)/2-ovoid of Q_2 , hence its complement $\mathcal{O}_2 := Q_2 \setminus \Phi(\mathcal{O}_1)$ is again a (q+1)/2-ovoid. Since \mathcal{O}_1 and \mathcal{O}_2 are disjoint in $Q^+(7, q)$, then $\mathcal{O}_1 \cup \mathcal{O}_2$ is a (q+1)-ovoid of $Q^+(7, q)$.

Construction of *m***-ovoids of** $Q^+(7,3)$ **for** $m \in \{2,4,6,8,10\}$ A **line spread** S of PG(3,q) is a set of $q^2 + 1$ lines such that each point of PG(3,q) belongs to exactly one line of S. **Construction of** *m***-ovoids of** $Q^+(7,3)$ **for** $m \in \{2,4,6,8,10\}$ A **line spread** S of PG(3,q) is a set of $q^2 + 1$ lines such that each point of PG(3,q) belongs to exactly one line of S. Since $Q^-(3,q)$ has $q^2 + 1$ points,

A line spread S of PG(3, q) is a set of $q^2 + 1$ lines such that each point of PG(3, q) belongs to exactly one line of S.

Since $Q^{-}(3,q)$ has $q^2 + 1$ points, a line spread of PG(3,q) has at most

$$|Q^{-}(3,q)|/2 = (q^{2}+1)/2$$

2-secant lines to $Q^{-}(3, q)$.

A line spread S of PG(3, q) is a set of $q^2 + 1$ lines such that each point of PG(3, q) belongs to exactly one line of S.

Since $Q^{-}(3,q)$ has $q^{2} + 1$ points, a line spread of PG(3,q) has at most

$$|Q^{-}(3,q)|/2 = (q^{2}+1)/2$$

2-secant lines to $Q^{-}(3, q)$. This number is attainable if q is odd.

A line spread S of PG(3, q) is a set of $q^2 + 1$ lines such that each point of PG(3, q) belongs to exactly one line of S.

Since $Q^{-}(3,q)$ has $q^{2}+1$ points, a line spread of PG(3,q) has at most

$$|Q^{-}(3,q)|/2 = (q^{2}+1)/2$$

2-secant lines to $Q^{-}(3, q)$. This number is attainable if q is odd.

Proposition (Adriaensen, De Beule, G., Mannaert - Preprint) Consider $Q^{-}(3, q)$ in the ambient space PG(3, q). If q = 3, q = 27 or $q \equiv 1$ (mod 4), then there exists a line spread of PG(3, q) containing $(q^2 + 1)/2$ 2-secant lines to $Q^{-}(3, q)$.

A line spread S of PG(3, q) is a set of $q^2 + 1$ lines such that each point of PG(3, q) belongs to exactly one line of S.

Since $Q^{-}(3,q)$ has $q^{2}+1$ points, a line spread of PG(3,q) has at most

$$|Q^{-}(3,q)|/2 = (q^{2}+1)/2$$

2-secant lines to $Q^{-}(3, q)$. This number is attainable if q is odd.

Proposition (Adriaensen, De Beule, G., Mannaert - Preprint) Consider $Q^{-}(3, q)$ in the ambient space PG(3, q). If q = 3, q = 27 or $q \equiv 1$ (mod 4), then there exists a line spread of PG(3, q) containing $(q^2 + 1)/2$

2-secant lines to $Q^{-}(3,q)$.

Lemma (Adriaensen, De Beule, G., Mannaert - Preprint)

Consider the elliptic quadric $Q^{-}(5,3)$ and let S be a 3-dimensional subspace meeting $Q^{-}(5,3)$ in an elliptic quadric $Q^{-}(3,3)$. Then for any two distinct points $P, R \in S$, there exists a 2-ovoid \mathcal{O} of $Q^{-}(5,3)$ with $\mathcal{O} \cap S = \{P, R\}$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

There exists a line spread of S^{\perp} containing five 2-secant lines ℓ_1, \ldots, ℓ_5 to $S^{\perp} \cap Q^+(7,3) \cong Q^-(3,3)$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

There exists a line spread of S^{\perp} containing five 2-secant lines ℓ_1, \ldots, ℓ_5 to $S^{\perp} \cap Q^+(7,3) \cong Q^-(3,3)$. Let $\pi_i = \langle S, \ell_i \rangle$ for $i = 1, \ldots, 5$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

There exists a line spread of S^{\perp} containing five 2-secant lines ℓ_1, \ldots, ℓ_5 to $S^{\perp} \cap Q^+(7,3) \cong Q^-(3,3)$.

Let $\pi_i = \langle S, \ell_i \rangle$ for i = 1, ..., 5. Then $\pi_1, ..., \pi_5$ are 5-dim subspaces meeting $Q^+(7,3)$ in an elliptic quadric and $\pi_i \cap \pi_i = S$ for $i \neq j$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

There exists a line spread of S^{\perp} containing five 2-secant lines ℓ_1, \ldots, ℓ_5 to $S^{\perp} \cap Q^+(7,3) \cong Q^-(3,3)$.

Let $\pi_i = \langle S, \ell_i \rangle$ for i = 1, ..., 5. Then $\pi_1, ..., \pi_5$ are 5-dim subspaces meeting $Q^+(7,3)$ in an elliptic quadric and $\pi_i \cap \pi_j = S$ for $i \neq j$. Partition the 10 points of $S \cap Q^+(7,3)$ into 5 pairs $\{P_i, R_i\}, i = 1, ..., 5$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

There exists a line spread of S^{\perp} containing five 2-secant lines ℓ_1, \ldots, ℓ_5 to $S^{\perp} \cap Q^+(7,3) \cong Q^-(3,3)$.

Let $\pi_i = \langle S, \ell_i \rangle$ for i = 1, ..., 5. Then $\pi_1, ..., \pi_5$ are 5-dim subspaces meeting $Q^+(7,3)$ in an elliptic quadric and $\pi_i \cap \pi_j = S$ for $i \neq j$. Partition the 10 points of $S \cap Q^+(7,3)$ into 5 pairs $\{P_i, R_i\}, i = 1, ..., 5$. For every *i* choose a 2-ovoid \mathcal{O}_i of $\pi_i \cap Q^+(7,3) \cong Q^-(5,3)$ which intersects *S* precisely in $\{P_i, R_i\}$.

The hyperbolic quadric $Q^+(7,3)$ contains m-ovoids for $m \in \{2,4,6,8,10\}$.

Sketch of the proof. Take a 3-dim subspace S of PG(7,3) meeting $Q^+(7,3)$ in an elliptic quadric. Then S^{\perp} is also a 3-dim subspace meeting $Q^+(7,3)$ in an elliptic quadric.

There exists a line spread of S^{\perp} containing five 2-secant lines ℓ_1, \ldots, ℓ_5 to $S^{\perp} \cap Q^+(7,3) \cong Q^-(3,3)$.

Let $\pi_i = \langle S, \ell_i \rangle$ for i = 1, ..., 5. Then $\pi_1, ..., \pi_5$ are 5-dim subspaces meeting $Q^+(7,3)$ in an elliptic quadric and $\pi_i \cap \pi_j = S$ for $i \neq j$. Partition the 10 points of $S \cap Q^+(7,3)$ into 5 pairs $\{P_i, R_i\}, i = 1, ..., 5$. For every *i* choose a 2-ovoid \mathcal{O}_i of $\pi_i \cap Q^+(7,3) \cong Q^-(5,3)$ which intersects *S* precisely in $\{P_i, R_i\}$. Then $\mathcal{O}_1, ..., \mathcal{O}_5$ are pairwise disjoint 2-ovoids of $Q^+(7,3)$.

Remark

• There are no 3 pairwise disjoint 3-ovoids of $Q^+(7,5)$.

Remark

- There are no 3 pairwise disjoint 3-ovoids of $Q^+(7,5)$.
- If q > 5, the same technique does not work, since any (q + 1)/2-ovoid of Q⁻(5,q) meets any Q⁻(3,q) ⊂ Q⁻(5,q) in more then |Q⁻(3,q)|/3 = (q² + 1)/3 points.

Thanks for your attention!

