Finite Geometry & Friends A Brussels' Summer School on Finite Geometry September 20, 2023

Decoding Interleaved Linearized Reed–Solomon Codes

Felicitas Hörmann^{1,2} – felicitas.hoermann@dlr.de joint work with Hannes Bartz¹ and Sven Puchinger³

¹Institute of Communications and Navigation – German Aerospace Center (DLR), Germany
 ²School of Computer Science – University of St. Gallen, Switzerland
 ³Hensoldt Sensors GmbH, Germany

1. Motivation from Code-Based Cryptography

2. Interleaving in the Sum-Rank Metric

3. Interleaved Linearized Reed–Solomon Codes

4. Implications for Code-Based Cryptography

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – September 20, 2023

• quantum computers can solve today's cryptographic primitives efficiently

Code-Based Cryptography

quantum computers can solve today's cryptographic primitives efficiently

 — urgent need for quantum-safe cryptography

Code-Based Cryptography

- quantum computers can solve today's cryptographic primitives efficiently

 — urgent need for quantum-safe cryptography
- current standardization project initiated by NIST in 2016

- quantum computers can solve today's cryptographic primitives efficiently

 — urgent need for quantum-safe cryptography
- current standardization project initiated by NIST in 2016
 - one standardized lattice-based key-encapsulation mechanism (KEM)
 - three remaining code-based KEM candidates

- quantum computers can solve today's cryptographic primitives efficiently

 — urgent need for quantum-safe cryptography
- current standardization project initiated by NIST in 2016
 - one standardized lattice-based key-encapsulation mechanism (KEM)
 - three remaining code-based KEM candidates
- code-based cryptography suffers from large key sizes

- quantum computers can solve today's cryptographic primitives efficiently

 — urgent need for quantum-safe cryptography
- current standardization project initiated by NIST in 2016
 - one standardized lattice-based key-encapsulation mechanism (KEM)
 - three remaining code-based KEM candidates
- code-based cryptography suffers from large key sizes
 - ⇒ many approaches to mitigate this issue are studied, e.g. alternative metrics or codes with high error-correction capability

McEliece Cryptosystem [McEliece, 1978]

Let $C \subseteq \mathbb{F}_{a^m}^n$ be a linear code of dimension k.

McEliece Cryptosystem [McEliece, 1978]

Let $C \subseteq \mathbb{F}_{q^m}^n$ be a linear code of dimension k.

Public key

- generator matrix $\mathbf{G}_{pub} \in \mathbb{F}_{q^m}^{k \times n}$ of \mathcal{C} that does not reveal an efficient decoder
- error weight t

0- private key

• efficient decoder for *C* with decoding radius at least *t*

McEliece Cryptosystem [McEliece, 1978]

Let $\mathcal{C} \subseteq \mathbb{F}_{a^m}^n$ be a linear code of dimension k.

Public key

- generator matrix $\mathbf{G}_{pub} \in \mathbb{F}_{q^m}^{k \times n}$ of \mathcal{C} that does not reveal an efficient decoder
- error weight t

0- private key

• efficient decoder for *C* with decoding radius at least *t*

3

1. Motivation from Code-Based Cryptography

2. Interleaving in the Sum-Rank Metric

3. Interleaved Linearized Reed–Solomon Codes

4. Implications for Code-Based Cryptography

Some Weights

Consider $\pmb{x} = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n$ and define

• its Hamming weight

$$wt_H(\mathbf{x}) := |\{i \in \{1, ..., n\} : x_i \neq 0\}|,$$

Some Weights

Consider $\pmb{x} = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n$ and define

• its Hamming weight

$$wt_H(\mathbf{x}) := |\{i \in \{1, ..., n\} : x_i \neq 0\}|,$$

• its rank weight

$$\operatorname{wt}_{rk}(\boldsymbol{x}) := \operatorname{rk}_q(\boldsymbol{x}),$$

where $rk_q(\mathbf{x})$ is the maximum number of \mathbb{F}_q -linearly independent entries of \mathbf{x} ,

Some Weights

Consider $\pmb{x} = \left(\begin{array}{c|c} \pmb{x}^{(1)} & \pmb{x}^{(2)} & \cdots & \pmb{x}^{(\ell)} \end{array} \right) \in \mathbb{F}_{q^m}^n$ and define

• its Hamming weight

$$wt_H(\mathbf{x}) := |\{i \in \{1, ..., n\} : x_i \neq 0\}|,$$

• its rank weight

$$\operatorname{wt}_{rk}(\boldsymbol{x}) := \operatorname{rk}_q(\boldsymbol{x}),$$

where $rk_q(\mathbf{x})$ is the maximum number of \mathbb{F}_q -linearly independent entries of \mathbf{x} ,

• and its **sum-rank weight** (with respect to a fixed length partition)

$$\mathsf{wt}_{\Sigma R}(\boldsymbol{x}) := \sum_{i=1}^{\ell} \mathsf{rk}_q\left(\boldsymbol{x}^{(i)}\right) = \mathsf{rk}_q\left(\underline{\boldsymbol{x}^{(1)}}\right) + \mathsf{rk}_q\left(\underline{\boldsymbol{x}^{(2)}}\right) + \dots + \mathsf{rk}_q\left(\underline{\boldsymbol{x}^{(\ell)}}\right).$$

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – September 20, 2023

The **metrics** for $\star \in \{H, rk, \Sigma R\}$ are $d_{\star}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{wt}_{\star}(\boldsymbol{x} - \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q^m}^n$.

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – September 20, 2023

The metrics for $\star \in \{H, rk, \Sigma R\}$ are $d_{\star}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{wt}_{\star}(\boldsymbol{x} - \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q^m}^n$.

Sum-Rank Metric

Hamming Metric

Rank Metric

The metrics for $\star \in \{H, rk, \Sigma R\}$ are $d_{\star}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{wt}_{\star}(\boldsymbol{x} - \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q^m}^n$.

Sum-Rank Metric

Hamming Metric

Rank Metric

increasing complexity of known generic attacks

The metrics for $\star \in \{H, rk, \Sigma R\}$ are $d_{\star}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{wt}_{\star}(\boldsymbol{x} - \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q^m}^n$.

Sum-Rank Metric

Hamming Metric

Rank Metric

increasing complexity of known generic attacks

4

structural attacks broke many proposals

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – September 20, 2023

6

For a linear code $\mathcal{C}\subseteq\mathbb{F}_{q^m}^n$ and an interleaving order $s\in\mathbb{N}^*,$ define

• the vertically interleaved code

$$\mathsf{VInt}(\mathcal{C}, s) := \left\{ oldsymbol{\mathcal{C}} = egin{pmatrix} oldsymbol{c}_1 \ dots \ oldsymbol{c}_\ell \end{pmatrix} : oldsymbol{c}_j \in \mathcal{C} ext{ for all } j = 1, \dots, s
ight\} \subseteq \mathbb{F}_{q^m}^{s imes n},$$

6

For a linear code $\mathcal{C}\subseteq\mathbb{F}_{q^m}^n$ and an interleaving order $s\in\mathbb{N}^*,$ define

• the vertically interleaved code

$$\mathsf{VInt}(\mathcal{C}, s) := \left\{ oldsymbol{\mathcal{C}} = egin{pmatrix} oldsymbol{c}_1 \\ \vdots \\ oldsymbol{c}_\ell \end{pmatrix} : oldsymbol{c}_j \in \mathcal{C} ext{ for all } j = 1, \dots, s
ight\} \subseteq \mathbb{F}_{q^m}^{s imes n},$$

• and the horizontally interleaved code

$$\mathsf{HInt}(\mathcal{C}, \boldsymbol{s}) := \left\{ \boldsymbol{c} = (\boldsymbol{c}_1 \mid \cdots \mid \boldsymbol{c}_\ell) : \boldsymbol{c}_j \in \mathcal{C} \text{ for all } j = 1, \dots, \boldsymbol{s} \right\} \subseteq \mathbb{F}_{q^m}^{sn}.$$

Choose an interleaving order $s \in \mathbb{N}^*$. For $\mathbf{x}_1, \ldots, \mathbf{x}_s \in \mathbb{F}_{q^m}^n$, consider the matrix $\mathbf{X} \in \mathbb{F}_{q^m}^{s \times n}$ with

Sum-Rank Weight of Vertically Interleaved Vectors

Choose an interleaving order $s \in \mathbb{N}^*$. For $\mathbf{x}_1, \ldots, \mathbf{x}_s \in \mathbb{F}_{q^m}^n$, consider the matrix $\mathbf{X} \in \mathbb{F}_{q^m}^{s \times n}$ with The sum-rank weight of **X** is

 $\mathsf{wt}_{\Sigma R}(X) =$

 $\boldsymbol{X} = \begin{vmatrix} \boldsymbol{X}_2 \\ \vdots \end{vmatrix}$

Xs

Sum-Rank Weight of Horizontally Interleaved Vectors

Choose an interleaving order $s \in \mathbb{N}^*$. For $\mathbf{x}_1, \ldots, \mathbf{x}_s \in \mathbb{F}_{q^m}^n$, consider the vector $\mathbf{x} \in \mathbb{F}_{q^m}^{sn}$ with

$$\begin{aligned} \mathbf{x} &= (\mathbf{x}_1 \mid \mathbf{x}_2 \mid \cdots \mid \mathbf{x}_s) \\ &= \left(\begin{bmatrix} \mathbf{x}_1^{(1)} & \mathbf{x}_1^{(2)} \cdots & \mathbf{x}_1^{(\ell)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_2^{(1)} & \mathbf{x}_2^{(2)} \cdots & \mathbf{x}_2^{(\ell)} \end{bmatrix} \cdots \begin{bmatrix} \mathbf{x}_s^{(1)} & \mathbf{x}_s^{(2)} \cdots & \mathbf{x}_s^{(\ell)} \end{bmatrix} \right). \end{aligned}$$

Sum-Rank Weight of Horizontally Interleaved Vectors

Choose an interleaving order $s \in \mathbb{N}^*$. For $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_s\in\mathbb{F}_{a^m}^n$, consider the vector $\boldsymbol{x}\in\mathbb{F}_{a^m}^{sn}$ with

$$\begin{aligned} \boldsymbol{x} &= (\boldsymbol{x}_1 \mid \boldsymbol{x}_2 \mid \cdots \mid \boldsymbol{x}_s) \\ &= \left(\begin{bmatrix} \boldsymbol{x}_1^{(1)} & \boldsymbol{x}_1^{(2)} \cdots & \boldsymbol{x}_1^{(\ell)} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_2^{(1)} & \boldsymbol{x}_2^{(2)} \cdots & \boldsymbol{x}_2^{(\ell)} \end{bmatrix} \cdots \begin{bmatrix} \boldsymbol{x}_s^{(1)} & \boldsymbol{x}_s^{(2)} \cdots & \boldsymbol{x}_s^{(\ell)} \end{bmatrix} \right). \end{aligned}$$

The sum-rank weight of **x** is

 $\operatorname{wt}_{\Sigma B}(\boldsymbol{X}) =$

8

1. Motivation from Code-Based Cryptography

2. Interleaving in the Sum-Rank Metric

3. Interleaved Linearized Reed–Solomon Codes

4. Implications for Code-Based Cryptography

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – September 20, 2023

Linearized Reed–Solomon Codes

Choose

- code locators $\beta = (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q^m}^n$ whose blocks $\beta^{(i)}$ contain \mathbb{F}_q -linearly independent elements
- and evaluation parameters ξ = (ξ₁,..., ξ_ℓ) ∈ ℝ^ℓ_{q^m} belonging to pairwise distinct nontrivial θ-conjugacy classes of ℝ_{q^m} (i.e., ∀i₁ ≠ i₂ ∄c ∈ ℝ^{*}_{q^m} : θ(c)ξ_{i₁}c⁻¹ = ξ_{i₂}).

Linearized Reed–Solomon Codes

Choose

- code locators $\beta = (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q^m}^n$ whose blocks $\beta^{(i)}$ contain \mathbb{F}_q -linearly independent elements
- and evaluation parameters ξ = (ξ₁,..., ξ_ℓ) ∈ ℝ^ℓ_{q^m} belonging to pairwise distinct nontrivial θ-conjugacy classes of ℝ_{q^m} (i.e., ∀i₁ ≠ i₂ ∄c ∈ ℝ^{*}_{q^m} : θ(c)ξ_{i1}c⁻¹ = ξ_{i2}).

We define the linearized Reed-Solomon (LRS) code with these parameters as

$$\mathrm{LRS}[\boldsymbol{\beta},\boldsymbol{\xi};\boldsymbol{n},k] = \left\{f(\boldsymbol{\beta})_{\boldsymbol{\xi}} = (f(\boldsymbol{\beta}^{(1)})_{\xi_1} \mid \cdots \mid f(\boldsymbol{\beta}^{(\ell)})_{\xi_\ell}) : f \in \mathbb{F}_{q^m}[x;\theta]_{< k}\right\} \subseteq \mathbb{F}_{q^m}^n.$$

Interleaved Linearized Reed–Solomon Codes

For an LRS code $C := LRS[\beta, \xi; n, k]$ and $s \in \mathbb{N}^*$, we consider

• the vertically interleaved LRS (VILRS) code VInt(C, s)

Interleaved Linearized Reed–Solomon Codes

For an LRS code $C := LRS[\beta, \xi; n, k]$ and $s \in \mathbb{N}^*$, we consider

- the vertically interleaved LRS (VILRS) code VInt(C, s)
- and the horizontally interleaved LRS (HILRS) code HInt(C, s).

Interleaved Linearized Reed–Solomon Codes

For an LRS code $C := LRS[\beta, \xi; n, k]$ and $s \in \mathbb{N}^*$, we consider

- the vertically interleaved LRS (VILRS) code VInt(C, s)
- and the horizontally interleaved LRS (HILRS) code HInt(C, s).

We consider probabilistic-unique decoding up to an error weight

$$t\leq \frac{s}{s+1}(n-k).$$

codeword	error e	received word
С	of weight t	y = c + e

Decoders for Interleaved LRS Codes

Decoders for VILRS Codes

- Loidreau–Overbeck-like [Bartz and Puchinger, 2023]
- interpolation-based [Bartz and Puchinger, 2023]
- syndrome-based (error-erasure) [Hörmann et al., 2023]

Decoders for HILRS Codes

- syndrome-based (error-erasure) [Hörmann et al., 2023]
- Gao-like [Hörmann and Bartz, 2023]

Decoders for Interleaved LRS Codes

Decoders for VILRS Codes

- Loidreau–Overbeck-like $\mathcal{O}(sn^{\omega}) \subseteq \mathcal{O}(sn^{2.373})$
- interpolation-based $\tilde{\mathcal{O}}(s^{\omega}\mathcal{M}(n)) \subseteq \tilde{\mathcal{O}}(s^{2.373}n^{1.635})$
- syndrome-based (error-erasure)
 \$\mathcal{O}(sn^2)\$

Decoders for HILRS Codes

- syndrome-based (error-erasure) $\mathcal{O}(sn^2)$
- Gao-like $\tilde{\mathcal{O}}(s^{\omega}\mathcal{M}(n)) \subseteq \tilde{\mathcal{O}}(s^{2.373}n^{1.635})$

 $\tilde{\mathcal{O}}$ neglects logarithmic factors, $\omega < 2.373$ is the matrix-multiplication coefficient, and $\mathcal{M}(n) \subseteq \mathcal{O}(n^{1.635})$ denotes the cost of multiplication of two degree-*n* skew polynomials.

Decoders for Interleaved LRS Codes

Decoders for VILRS Codes

- Loidreau–Overbeck-like $\mathcal{O}(sn^{\omega}) \subseteq \mathcal{O}(sn^{2.373})$
- interpolation-based $\tilde{\mathcal{O}}(s^{\omega}\mathcal{M}(n)) \subseteq \tilde{\mathcal{O}}(s^{2.373}n^{1.635})$
- syndrome-based (error-erasure)
 \$\mathcal{O}(sn^2)\$

Decoders for HILRS Codes

- syndrome-based (error-erasure)
 \$\mathcal{O}(sn^2)\$
- Gao-like $\tilde{\mathcal{O}}(s^{\omega}\mathcal{M}(n)) \subseteq \tilde{\mathcal{O}}(s^{2.373}n^{1.635})$

 $\tilde{\mathcal{O}}$ neglects logarithmic factors, $\omega < 2.373$ is the matrix-multiplication coefficient, and $\mathcal{M}(n) \subseteq \mathcal{O}(n^{1.635})$ denotes the cost of multiplication of two degree-*n* skew polynomials.

1. Motivation from Code-Based Cryptography

2. Interleaving in the Sum-Rank Metric

3. Interleaved Linearized Reed–Solomon Codes

4. Implications for Code-Based Cryptography

 VILRS and HILRS codes are interesting candidates for McEliece-like cryptosystems

Conclusion

- VILRS and HILRS codes are interesting candidates for McEliece-like cryptosystems
 - decoding with respect to the sum-rank metric
 - probabilistic-unique decoding for error weights up to $\frac{s}{s+1}(n-k)$
 - subquadratic decoding complexity

Conclusion

- VILRS and HILRS codes are interesting candidates for McEliece-like cryptosystems
 - $^{\circ}\,$ decoding with respect to the sum-rank metric
 - probabilistic-unique decoding for error weights up to $\frac{s}{s+1}(n-k)$
 - subquadratic decoding complexity
- VILRS codes can only provide security for low interleaving order *s* < *t* [Jerkovits et al., 2023]

Conclusion

- VILRS and HILRS codes are interesting candidates for McEliece-like cryptosystems
 - $^{\circ}\,$ decoding with respect to the sum-rank metric
 - probabilistic-unique decoding for error weights up to $\frac{s}{s+1}(n-k)$
 - subquadratic decoding complexity
- VILRS codes can only provide security for low interleaving order *s* < *t* [Jerkovits et al., 2023]
- (more) investigation of potential attacks needed

References

[Bartz and Puchinger, 2023] Bartz, H. and Puchinger, S. (2023). Fast Decoding of Interleaved Linearized Reed–Solomon Codes and Variants. submitted to: IEEE Transactions on Information Theory.

[Hörmann and Bartz, 2023] Hörmann, F. and Bartz, H. (2023). Fast Gao-like Decoding of Horizontally Interleaved Linearized Reed–Solomon Codes. accepted at: Code-Based Cryptography: CBCrypto 2023.

[Hörmann et al., 2023] Hörmann, F., Bartz, H., and Puchinger, S. (2023). Syndrome-Based Error-Erasure Decoding of Interleaved Linearized Reed–Solomon Codes. to be submitted to: IEEE Transactions on Information Theory.

[Jerkovits et al., 2023] Jerkovits, T., Hörmann, F., and Bartz, H. (2023). On Decoding High-Order Interleaved Sum-Rank-Metric Codes. In *Code-Based Cryptography: CBCrypto 2022*, pages 90–109.

[McEliece, 1978] McEliece, R. J. (1978). A Public-Key Cryptosystem based on Algebraic Coding Theory. DSN Progress Report, 42–44:114–116.