The Twisted $D_{5,5}(q)$ Graph

Ferdinand Ihringer

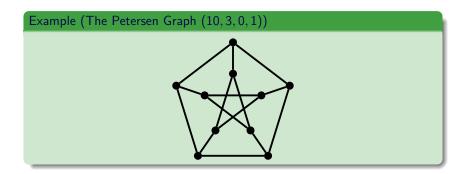
Ghent University, Belgium

20 September 2023

Strongly Regular Graphs (SRGs)

A *k*-regular graph of order *v* is called **strongly regular** with parameters (v, k, λ, μ) (where 0 < k < v - 1) if

- **(**) any two adjacent vertices have precisely λ common neighbors,
- 2) any two nonadjacent vertices have precisely μ common neighbors.



Grassmann Graphs

V(n,q) = vector space of dimension *n* over field with *q* elements.

The Grassmann Graph $J_q(5,2)$. This generalizes to $J_q(n,k)$.

```
Vertices: 2-spaces of V(5, q).
Adjacency: meet in an 1-space.
```

 $J_q(n,2)$ is an SRG. In general, $J_q(n,k)$ is a distance-regular graph.

Twisted Grassmann Graphs I

V(n,q) = vector space of dimension *n* over field with *q* elements.

The Twisted Grassmann Graph

Discovered by Van Dam & Koolen (2005). Same parameters as $J_q(2k+1, k)$.

Take a 1-space P of V(5, q).

Vertices: 2-spaces of V(5, q) not on P, 4-spaces on P.

- As in $J_q(5,2)$ if x, y are not on P.
- If x, y on P, then x, y are adjacent.
- Otherwise, x, y are adjacent iff x, y incident.

Twisted Grassmann Graphs II

V(n,q) = vector space of dimension *n* over field with *q* elements.

The Twisted Grassmann Graph (again)

This description is due to Munemasa (2017).

Take a polarity σ in the residue of a point P of V(5,q).

Vertices: 2-spaces of V(5, q).

- As in $J_q(5,2)$ if x, y are not on P.
- As in $J_q(4,2)$ if x, y are on P.
- If $P \nsubseteq x, P \subseteq y$, then x, y are adjacent iff $x \subseteq y^{\sigma}$.

Diagrams

The moral reason for non-isomorphy: V(2k, q) has a polarity which does not extend to V(2k + 1, q).

We can check all the buildings for such polarities!

(Remind the speaker to draw some rank \geq 3 diagrams.)

Conclusion 1: We are left with the diagrams A_n , D_5 , E_6 , E_7 . **Conclusion 2:** For DRGs, only A_n and D_5 remain. Diagrams

The $D_{5,5}(q)$ Graph

Put

$$Q(x) = x_1 x_2 + x_3 x_4 + x_5 x_6 + x_7 x_8 + x_9 x_{10}.$$

Then the restriction of V(10, q) to vectors with Q(x) = 0 yields the geometry $O^+(10, q)$.

The $D_{5,5}(q)$ Graph

Vertices: 5-spaces of one type of $O^+(10, q)$. **Adjacency:** meet in a 3-space.

Up to now: Only known family with parameters

$$egin{aligned} & v = (q+1)(q^2+1)(q^3+1)(q^4+1), & k = q(q^2+1)rac{q^5-1}{q-1}, \ & \lambda = q-1+q^2(q+1)(q^2+q+1), & \mu = (q^2+1)(q^2+q+1). \end{aligned}$$

The Twisted $D_{5,5}(q)$ Graph

Put

$$Q(x) = x_1 x_2 + x_3 x_4 + x_5 x_6 + x_7 x_8 + x_9 x_{10}.$$

Then the restriction of V(10, q) to vectors with Q(x) = 0 yields the geometry $O^+(10, q)$.

The Twisted $D_{5,5}(q)$ Graph

Discovered by I. (2023). Same parameters as $D_{5,5}(q)$.

Let P be a 1-space of $O^+(10, q)$.

Vertices: 5-spaces of one type not on P, 2-space through P.

- As in $D_{5,5}(q)$ if x, y are 5-spaces.
- Being coplanar in $D_{5,5}$ if x, y are 2-spaces.
- Otherwise, x, y are adjacent iff $x \cap y$ is a 1-space.

The Twisted $D_{5,5}(q)$ Graph

Put

$$Q(x) = x_1 x_2 + x_3 x_4 + x_5 x_6 + x_7 x_8 + x_9 x_{10}.$$

Then the restriction of V(10, q) to vectors with Q(x) = 0 yields the geometry $O^+(10, q)$.

The Twisted $D_{5,5}(q)$ Graph (again)

Discovered by I. (2023). Same parameters as $D_{5,5}(q)$.

Identify the residue of some 1-space P of $O^+(10, q)$ with $O^+(8, q)$.

 σ : polarity of $O^+(8,q)$ interchanging one type of 4-spaces and 1-spaces.

Vertices: 5-spaces of one type.

- As in $D_{5,5}(q)$ if x, y are not on P.
- As in $D_{5,5}(q)$ if x, y are both on P.
- Otherwise, x, y are adjacent iff $x \cap y^{\sigma}$ is a 3-space.

Maximal Cliques and the Automorphism Group

Well-known: Two types of maximal cliques of $D_{5,5}(q)$.

Easy Exercise: Seven types of maximal cliques of the twisted $D_{5,5}(q)$. Proof: See what happens to $D_{5,5}(q)$.

Corollary

We have $Aut(twisted D_{5,5}(q)) = Stab(Aut(D_{5,5}(q)), P)$.

Thank you for your attention!