The Twisted $D_{5,5}(q)$ Graph

Ferdinand Ihringer

Ghent University, Belgium

20 September 2023

Strongly Regular Graphs (SRGs)

A k-regular graph of order v is called strongly regular with parameters (v, k, λ, μ) (where $0<k<v-1$) if
(1) any two adjacent vertices have precisely λ common neighbors,
(2) any two nonadjacent vertices have precisely μ common neighbors.

Example (The Petersen Graph (10, 3, 0, 1))

Grassmann Graphs

$V(n, q)=$ vector space of dimension n over field with q elements.
The Grassmann Graph $J_{q}(5,2)$.
This generalizes to $J_{q}(n, k)$.
Vertices: 2-spaces of $V(5, q)$.
Adjacency: meet in an 1 -space.
$J_{q}(n, 2)$ is an SRG.
In general, $J_{q}(n, k)$ is a distance-regular graph.

Twisted Grassmann Graphs I

$V(n, q)=$ vector space of dimension n over field with q elements.

The Twisted Grassmann Graph

Discovered by Van Dam \& Koolen (2005).
Same parameters as $J_{q}(2 k+1, k)$.
Take a 1 -space P of $V(5, q)$.
Vertices: 2-spaces of $V(5, q)$ not on $P, 4$-spaces on P.

Adjacency of x and y :

- As in $J_{q}(5,2)$ if x, y are not on P.
- If x, y on P, then x, y are adjacent.
- Otherwise, x, y are adjacent iff x, y incident.

Twisted Grassmann Graphs II

$V(n, q)=$ vector space of dimension n over field with q elements.

The Twisted Grassmann Graph (again)

This description is due to Munemasa (2017).
Take a polarity σ in the residue of a point P of $V(5, q)$.
Vertices: 2-spaces of $V(5, q)$.
Adjacency of x and y :

- As in $J_{q}(5,2)$ if x, y are not on P.
- As in $J_{q}(4,2)$ if x, y are on P.
- If $P \nsubseteq x, P \subseteq y$, then x, y are adjacent iff $x \subseteq y^{\sigma}$.

Diagrams

The moral reason for non-isomorphy:
$V(2 k, q)$ has a polarity which does not extend to $V(2 k+1, q)$.
We can check all the buildings for such polarities!
(Remind the speaker to draw some rank ≥ 3 diagrams.)

Conclusion 1: We are left with the diagrams $A_{n}, D_{5}, E_{6}, E_{7}$.
Conclusion 2: For DRGs, only A_{n} and D_{5} remain.

The $D_{5,5}(q)$ Graph

Put

$$
Q(x)=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}+x_{7} x_{8}+x_{9} x_{10} .
$$

Then the restriction of $V(10, q)$ to vectors with $Q(x)=0$ yields the geometry $O^{+}(10, q)$.

The $D_{5,5}(q)$ Graph

Vertices: 5 -spaces of one type of $O^{+}(10, q)$.
Adjacency: meet in a 3 -space.

Up to now: Only known family with parameters

$$
\begin{array}{ll}
v=(q+1)\left(q^{2}+1\right)\left(q^{3}+1\right)\left(q^{4}+1\right), & k=q\left(q^{2}+1\right) \frac{q^{5}-1}{q-1}, \\
\lambda=q-1+q^{2}(q+1)\left(q^{2}+q+1\right), & \mu=\left(q^{2}+1\right)\left(q^{2}+q+1\right) .
\end{array}
$$

The Twisted $D_{5,5}(q)$ Graph

Put

$$
Q(x)=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}+x_{7} x_{8}+x_{9} x_{10} .
$$

Then the restriction of $V(10, q)$ to vectors with $Q(x)=0$ yields the geometry $O^{+}(10, q)$.

The Twisted $D_{5,5}(q)$ Graph
Discovered by I. (2023). Same parameters as $D_{5,5}(q)$.
Let P be a 1 -space of $O^{+}(10, q)$.
Vertices: 5-spaces of one type not on $P, 2$-space through P.
Adjacency of x and y :

- As in $D_{5,5}(q)$ if x, y are 5 -spaces.
- Being coplanar in $D_{5,5}$ if x, y are 2 -spaces.
- Otherwise, x, y are adjacent iff $x \cap y$ is a 1 -space.

The Twisted $D_{5,5}(q)$ Graph

Put

$$
Q(x)=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}+x_{7} x_{8}+x_{9} x_{10} .
$$

Then the restriction of $V(10, q)$ to vectors with $Q(x)=0$ yields the geometry $O^{+}(10, q)$.

The Twisted $D_{5,5}(q)$ Graph (again)
Discovered by I. (2023). Same parameters as $D_{5,5}(q)$.
Identify the residue of some 1 -space P of $O^{+}(10, q)$ with $O^{+}(8, q)$. σ : polarity of $O^{+}(8, q)$ interchanging one type of 4 -spaces and 1 -spaces.
Vertices: 5 -spaces of one type.
Adjacency of x and y :

- As in $D_{5,5}(q)$ if x, y are not on P.
- As in $D_{5,5}(q)$ if x, y are both on P.
- Otherwise, x, y are adjacent iff $x \cap y^{\sigma}$ is a 3-space.

Maximal Cliques and the Automorphism Group

Well-known: Two types of maximal cliques of $D_{5,5}(q)$.
Easy Exercise: Seven types of maximal cliques of the twisted $D_{5,5}(q)$.
Proof: See what happens to $D_{5,5}(q)$.

Corollary
We have Aut $\left(\right.$ twisted $\left.D_{5,5}(q)\right)=\operatorname{Stab}\left(\operatorname{Aut}\left(D_{5,5}(q)\right), P\right)$.

Thank you for your attention!

