Flag-transitive linear spaces and spreads in $\operatorname{PG}(5, q)$
 Finite Geometry and Friends 2023

Cian Jameson
(joint work with John Sheekey)

University College Dublin

19 September 2023

Introduction

In this talk we consider linear spaces.

Introduction

In this talk we consider linear spaces.

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

Introduction

In this talk we consider linear spaces.

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition, called the automorphism group of L, and is denoted by $\operatorname{Aut}(L)$.

Introduction

In this talk we consider linear spaces.

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition, called the automorphism group of L, and is denoted by $\operatorname{Aut}(L)$.

A flag of L is an incident point-line pair (x, ℓ).

Introduction

In this talk we consider linear spaces.

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition, called the automorphism group of L, and is denoted by $\operatorname{Aut}(L)$.

A flag of L is an incident point-line pair (x, ℓ).

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on flags?

Linear spaces

Question: When is $\operatorname{Aut}(L)$ flag-transitive?

Linear spaces

Question: When is $\operatorname{Aut}(L)$ flag-transitive?
Due to work by Buekenhout, Delandtsheer, Doyen et al. (1990), Liebeck (1998), Saxl (2002) and others, the result is known for all L and $\operatorname{Aut}(L)$ except when L is constructed from a t-spread of $V(n, q)$ and $\operatorname{Aut}(L)$ is $T \circ G_{0}$, where G_{0} is a subgroup of $\Gamma L\left(1, q^{n}\right) \leq \Gamma L(n, q)$.

Pauley and Bamberg (2007) studied the case $t=2$ and $G_{0}=C:=\left\langle\omega^{q+1}\right\rangle \leq \Gamma L\left(1, q^{2 m}\right)$, where ω is a generator of $\mathbb{F}_{q^{2 m}}^{\times}$.

Line-spreads

Let $P(x)$ be an irreducible polynomial over $\mathbb{F}_{q^{2}}$ of degree m. Then $P(x)$ satisfies \star if and only if for all nonzero $x, y \in \mathbb{F}_{q^{2}}$ we have

$$
\frac{x^{m} P\left(x^{q-1}\right)}{y^{m} P\left(y^{q-1}\right)} \in \mathbb{F}_{q} \Longrightarrow \frac{x}{y} \in \mathbb{F}_{q}
$$

Line-spreads

Let $P(x)$ be an irreducible polynomial over $\mathbb{F}_{q^{2}}$ of degree m. Then $P(x)$ satisfies \star if and only if for all nonzero $x, y \in \mathbb{F}_{q^{2}}$ we have

$$
\frac{x^{m} P\left(x^{q-1}\right)}{y^{m} P\left(y^{q-1}\right)} \in \mathbb{F}_{q} \Longrightarrow \frac{x}{y} \in \mathbb{F}_{q} .
$$

Theorem (Pauley-Bamberg, 2007)

Polynomials satisfying *

Flag-transitive linear spaces with the given aut. group

Known examples

- Kantor (1993): $P(x)=x^{m}-\zeta$, where ζ is a generator of $\mathbb{F}_{q^{2}}^{\times}$.
- Pauley and Bamberg (2007): $\operatorname{PB}(x)=\frac{x^{p+1}-1}{x-1}-2$ where p is an odd prime.
- Feng and Lu (2021):

$$
\mathrm{FL}_{n}(x):=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}
$$

where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

Permutation polynomials (I)

Theorem (Feng-Lu, 2021)
Suppose $(\operatorname{deg}(P), q-1)=1$. Then $P(x)$ satisfies \star if and only if $x^{d} P\left(x^{q-1}\right)$ permutes $\mathbb{F}_{q^{2}}$.

Permutation polynomials (I)

Theorem (Feng-Lu, 2021)
Suppose $(\operatorname{deg}(P), q-1)=1$. Then $P(x)$ satisfies \star if and only if $x^{d} P\left(x^{q-1}\right)$ permutes $\mathbb{F}_{q^{2}}$.

Note that:

- Reducible $P(x)$ is interesting for permutation polynomials, but not for linear spaces.
- The case $(\operatorname{deg}(P), q-1)>1$ is interesting for linear spaces, but not for permutation polynomials (since in that case $x^{d} P\left(x^{q-1}\right)$ can never permute $\left.\mathbb{F}_{q^{2}}\right)$.

An equivalent critieron

Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{F}_{q^{2}}[x]$, and define $\tilde{P}(x):=\sum_{i=0}^{m} a_{m-i}^{q} x^{i}$.
We define a polynomial in two variables as follows.

$$
H_{P}(z, w):=\frac{P(z) \tilde{P}(w)-\tilde{P}(z) P(w)}{z-w} .
$$

An equivalent critieron

Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{F}_{q^{2}}[x]$, and define $\tilde{P}(x):=\sum_{i=0}^{m} a_{m-i}^{q} x^{i}$.
We define a polynomial in two variables as follows.

$$
H_{P}(z, w):=\frac{P(z) \tilde{P}(w)-\tilde{P}(z) P(w)}{z-w}
$$

Lemma

A polynomial $P(x)$ satisfies $\star \Longleftrightarrow$ the system $H_{P}(z, w)=0$, $z^{q+1}=w^{q+1}=1$ has no solutions with $z \neq w$.

Binomials and quadratics

Theorem (binomials)
The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) $\theta^{q+1} \neq 1$;
(ii) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(iii) if $m \equiv 0 \bmod 4$ then $q \equiv 1 \bmod 4$;
(iv) $(m, q+1)=1$.

Binomials and quadratics

Theorem (binomials)
The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) $\theta^{q+1} \neq 1$;
(ii) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(iii) if $m \equiv 0 \bmod 4$ then $q \equiv 1 \bmod 4$;
(iv) $(m, q+1)=1$.

In particular, if $m=3$ then there exists an irreducible cubic binomial satisfying \star if and only if $q \equiv 1 \bmod 3$.

Binomials and quadratics

Theorem (binomials)
The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) $\theta^{q+1} \neq 1$;
(ii) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(iii) if $m \equiv 0 \bmod 4$ then $q \equiv 1 \bmod 4$;
(iv) $(m, q+1)=1$.

In particular, if $m=3$ then there exists an irreducible cubic binomial satisfying \star if and only if $q \equiv 1 \bmod 3$.

We also calculated the equivalence classes of binomials for arbitrary degree.

Binomials and quadratics

Theorem (binomials)
The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) $\theta^{q+1} \neq 1$;
(ii) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(iii) if $m \equiv 0 \bmod 4$ then $q \equiv 1 \bmod 4$;
(iv) $(m, q+1)=1$.

In particular, if $m=3$ then there exists an irreducible cubic binomial satisfying \star if and only if $q \equiv 1 \bmod 3$.

We also calculated the equivalence classes of binomials for arbitrary degree.
Theorem (quadratics)
There are no quadratics satisfying \star.

Cubics

Example $(m=3)$

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1)
$$

Cubics

Example ($m=3$)

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1) .
$$

Suppose $z w+z+1=0 \Longleftrightarrow z=\frac{-1}{w+1}$.

Cubics

Example ($m=3$)

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1) .
$$

Suppose $z w+z+1=0 \Longleftrightarrow z=\frac{-1}{w+1}$. Then

$$
\begin{aligned}
& z^{q+1}=1=w^{q+1} \\
\Longleftrightarrow & w^{q+1}+w^{q}+w=0 \\
\Longleftrightarrow & w^{2}+w+1=0 \\
\Longleftrightarrow & z=w .
\end{aligned}
$$

Cubics

Example ($m=3$)

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1) .
$$

Suppose $z w+z+1=0 \Longleftrightarrow z=\frac{-1}{w+1}$. Then

$$
\begin{aligned}
& z^{q+1}=1=w^{q+1} \\
\Longleftrightarrow & w^{q+1}+w^{q}+w=0 \\
\Longleftrightarrow & w^{2}+w+1=0 \\
\Longleftrightarrow & z=w .
\end{aligned}
$$

Hence $P(x)$ satisfies $*$.

Cubics

Theorem
Let $P(x)=x^{3}-\delta x^{2}-\gamma x-\theta \in \mathbb{F}_{q^{2}}[x]$. Then $H_{P}(z, w)$ is reducible (and not identically zero) if and only if one of the following holds:
(i) $P(x)=B_{\theta}(x):=x^{3}-\theta, \theta^{q+1} \neq 1$;
(ii) $P(x)=P_{\delta, \alpha}(x):=x^{3}-\delta x^{2}-\left(\delta \alpha+3 \alpha^{1-q}\right) x-\left(\delta \alpha^{2}\left(\frac{1-\alpha^{-(q+1)}}{3}\right)+\alpha^{2-q}\right)$, $\alpha \neq 0$;
(iii) $P(x)=Q_{\delta, \gamma}(x):=x^{3}-\delta x^{2}-\gamma x+\delta \gamma / 9, \gamma^{q+1}=9$.

Furthermore

- an irreducible $B_{\theta}(x)$ satisfies \star if and only if $q \equiv 1 \bmod 3$;
- an irreducible $P_{\delta, \alpha}(x)$ satisfies \star if and only if $\frac{4-\alpha^{q+1}}{3 \alpha^{q+1}}$ is a nonzero square in \mathbb{F}_{q}, and $\delta=0$ or $\left(\alpha+3 \delta^{-q}\right)^{q+1} \neq 1$;
- an irreducible $Q_{\delta, \gamma}(x)$ satisfies \star if and only if $\gamma^{\frac{q+1}{2}}=3$.

Permutation polynomials (II)

In their work on characterising permutation polynomials of $\mathbb{F}_{q^{2}}$ of the form

$$
f_{a, b}(X)=X\left(1+a X^{q(q-1)}+b X^{2(q-1)}\right)
$$

Bartoli and Timpanella (2021) considered a curve with affine equation

$$
-b^{q+1} H_{P}(z, w)=0
$$

where $P(x)=x^{3}+b^{-1} x+a b^{-1}$. They showed that $f_{a, b}(X)$ is a PP if and only if P satisfies \star. It follows that $P(x)$ is of the form $P_{\delta, \alpha}(x)$ with $\delta=0, a=\alpha / 3$ and $b=-\alpha^{q-1} / 3$.

Permutation polynomials (II)

In their work on characterising permutation polynomials of $\mathbb{F}_{q^{2}}$ of the form

$$
f_{a, b}(X)=X\left(1+a X^{q(q-1)}+b X^{2(q-1)}\right)
$$

Bartoli and Timpanella (2021) considered a curve with affine equation

$$
-b^{q+1} H_{P}(z, w)=0
$$

where $P(x)=x^{3}+b^{-1} x+a b^{-1}$. They showed that $f_{a, b}(X)$ is a PP if and only if P satisfies \star. It follows that $P(x)$ is of the form $P_{\delta, \alpha}(x)$ with $\delta=0, a=\alpha / 3$ and $b=-\alpha^{q-1} / 3$.

Following their approach, we showed that for $q \geq 47$, if P satisfies \star then H_{P} is reducible.

Equivalence

Theorem (Pauley-Bamberg, 2007)

Let $P(x), Q(x) \in \mathbb{F}_{q^{2}}[x]$ satisfy $*$. Then P and Q yield equivalent linear spaces if and only if

$$
P(x)=\lambda\left(u+v^{q} x\right)^{m} Q^{\sigma}\left(\frac{v+u^{q} x}{u+v^{q} x}\right)
$$

for some $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q^{2 m}}\right)$ and $u, v, \lambda \in \mathbb{F}_{q^{2}}$ where $\lambda \neq 0$ and $u^{q+1} \neq v^{q+1}$.

Cubic equivalence

Theorem

Let $P(x)$ be an irreducible polynomial of the form $B_{\theta}(x), P_{\delta, \alpha}(x)$ or $Q_{\delta, \gamma}(x)$ that satisfies \star. Then $P(x)$ is equivalent to some $P_{\delta^{\prime}, 1}(x)$.

Cubic equivalence

Theorem

Let $P(x)$ be an irreducible polynomial of the form $B_{\theta}(x), P_{\delta, \alpha}(x)$ or $Q_{\delta, \gamma}(x)$ that satisfies \star. Then $P(x)$ is equivalent to some $P_{\delta^{\prime}, 1}(x)$.

By counting the number of irreducibles of the form $P_{\delta, 1}(x)$, and calculating precisely the equivalences between polynomials of this form, we get the following.

Cubic equivalence

Theorem

Let $P(x)$ be an irreducible polynomial of the form $B_{\theta}(x), P_{\delta, \alpha}(x)$ or $Q_{\delta, \gamma}(x)$ that satisfies \star. Then $P(x)$ is equivalent to some $P_{\delta^{\prime}, 1}(x)$.

By counting the number of irreducibles of the form $P_{\delta, 1}(x)$, and calculating precisely the equivalences between polynomials of this form, we get the following.

Theorem

The number of equivalence classes of irreducible cubic polynomials satisfying \star such that $H_{P}(z, w)$ is reducible is precisely

$$
\left\{\begin{array}{lll}
\frac{q-1}{3}, & \text { if } q \equiv 1 & \bmod 3 \\
\frac{q+1}{3}, & \text { if } q \not \equiv 1 & \bmod 3
\end{array} .\right.
$$

A surprising connection

Lemma

$P(x)$ divides $H_{P}\left(x^{q^{2}}, x\right)$.
For each of our cubic orbit representatives $P_{\delta, 1}(x)$ we have

$$
H_{P_{\delta, 1}}(z, w)=(z w+z+1)(z w+w+1)
$$

and so $P_{\delta, 1}(x)$ divides $\left(x^{q^{2}+1}+x^{q^{2}}+1\right)\left(x^{q^{2}+1}+x+1\right)$.
Conversely, methods of Stichtenoth-Topuzoğlu (2012) and Gow-McGuire (2021) tells us that every irreducible cubic factor of $\left(x^{q^{2}+1}+x^{q^{2}}+1\right)\left(x^{q^{2}+1}+x+1\right) \in \mathbb{F}_{q^{2}}[x]$ is of the form

$$
P_{\delta, 1}(x)=x^{3}-\delta x^{2}-(\delta+3) x-1
$$

A surprising connection

Lemma

$P(x)$ divides $H_{P}\left(x^{q^{2}}, x\right)$.
For each of our cubic orbit representatives $P_{\delta, 1}(x)$ we have

$$
H_{P_{\delta, 1}}(z, w)=(z w+z+1)(z w+w+1)
$$

and so $P_{\delta, 1}(x)$ divides $\left(x^{q^{2}+1}+x^{q^{2}}+1\right)\left(x^{q^{2}+1}+x+1\right)$.
Conversely, methods of Stichtenoth-Topuzoğlu (2012) and Gow-McGuire (2021) tells us that every irreducible cubic factor of $\left(x^{q^{2}+1}+x^{q^{2}}+1\right)\left(x^{q^{2}+1}+x+1\right) \in \mathbb{F}_{q^{2}}[x]$ is of the form

$$
P_{\delta, 1}(x)=x^{3}-\delta x^{2}-(\delta+3) x-1
$$

We aim to explain and expand this connection to find polynomials of other degrees satisfying \star.

Orbit polynomials

Lemma
$P(x)$ divides $H_{P}\left(x^{q^{2}}, x\right)$.
For $\Psi=\left(\begin{array}{cc}-b & -d \\ c & a\end{array}\right) \in \mathrm{GL}\left(2, q^{2}\right)$, let

$$
H_{\psi}(z, w)=c z w+a z+b w+d
$$

Orbit polynomials

Lemma
$P(x)$ divides $H_{P}\left(x^{q^{2}}, x\right)$.
For $\Psi=\left(\begin{array}{cc}-b & -d \\ c & a\end{array}\right) \in \operatorname{GL}\left(2, q^{2}\right)$, let

$$
H_{\psi}(z, w)=c z w+a z+b w+d
$$

We consider the case in which $H_{P}(z, w)=\prod_{\psi} H_{\psi}(z, w)$.

There has much study of the factorisation of

$$
F_{\Psi}(x):=H_{\Psi}\left(x^{q^{2}}, x\right)=c x^{q^{2}+1}+a x^{q^{2}}+b x+d
$$

Orbit polynomials

Lemma
$P(x)$ divides $H_{P}\left(x^{q^{2}}, x\right)$.
For $\Psi=\left(\begin{array}{cc}-b & -d \\ c & a\end{array}\right) \in \operatorname{GL}\left(2, q^{2}\right)$, let

$$
H_{\Psi}(z, w)=c z w+a z+b w+d
$$

We consider the case in which $H_{P}(z, w)=\prod_{\psi} H_{\psi}(z, w)$.

There has much study of the factorisation of

$$
F_{\Psi}(x):=H_{\Psi}\left(x^{q^{2}}, x\right)=c x^{q^{2}+1}+a x^{q^{2}}+b x+d
$$

If $P(x) \mid F_{\Psi}(x)$ and $Q(x) \mid F_{\Phi}(x)$ then P and Q are equivalent if and only if F_{Ψ} and F_{Φ} are equivalent.

Orbit polynomials

$$
F_{\Psi}(x):=H_{\Psi}\left(x^{q^{2}}, x\right)=c x^{q^{2}+1}+a x^{q^{2}}+b x+d
$$

The number of factors of F_{Ψ} and their degrees were determined by Stichtenoth and Topuzoğlu (2011).
Further work was carried out by Gow and McGuire (2022) using results on group actions and orbit polynomials.

Orbit polynomials

$$
F_{\Psi}(x):=H_{\Psi}\left(x^{q^{2}}, x\right)=c x^{q^{2}+1}+a x^{q^{2}}+b x+d
$$

The number of factors of F_{Ψ} and their degrees were determined by Stichtenoth and Topuzoğlu (2011).
Further work was carried out by Gow and McGuire (2022) using results on group actions and orbit polynomials.

For $\Psi \in \operatorname{GL}\left(2, q^{2}\right)$, let $[\Psi]$ denote the corresponding element of PGL(2, q^{2}).
For $s=[\Psi]=\left[\left(\begin{array}{cc}-b & -d \\ c & a\end{array}\right)\right]$, define $s(x)=-\frac{b x+d}{c x+a}$.
The orbit polynomial of the group G generated by s is

$$
O_{G}(x)=\prod_{s \in G}(x-s(y)) \in \mathbb{F}_{q^{2}}(y)[x]
$$

Orbit polynomials

$$
F_{\Psi}(x):=H_{\Psi}\left(x^{q^{2}}, x\right)=c x^{q^{2}+1}+a x^{q^{q^{2}}}+b x+d
$$

The orbit polynomial of the group G generated by $s=[\psi]$ is

$$
O_{G}(x)=\prod_{s \in G}(x-s(y)) \in \mathbb{F}_{q^{2}}(y)[x] .
$$

Gow-McGuire (2022)

Let $|G|=: r$ divide $q^{2}+1$. Then the irreducible factors of $F_{\psi}(x)$ have degree r and each irreducible factor is a specialisation of the orbit polynomial $O_{G}(x)$.

Orbit polynomials

Example

Let $\Psi=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$, so $F_{\Psi}(x)=x^{q^{2}+1}+x+1$ and the order of $s=[\Psi]$ is 3 .

Orbit polynomials

Example

Let $\Psi=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$, so $F_{\Psi}(x)=x^{q^{2}+1}+x+1$ and the order of $s=[\Psi]$ is 3 . Then

$$
\begin{aligned}
O_{G}(x) & =(x-y)(x-s(y))\left(x-s^{2}(y)\right) \\
& =(x-y)\left(x+\frac{y+1}{y}\right)\left(x+\frac{1}{y+1}\right) \\
& =x^{3}+\left(\frac{1+3 y-y^{3}}{y(y+1)}\right) x^{2}+\left(\frac{1-3 y^{2}-y^{3}}{y(y+1)}\right) x-1 \\
& =P_{\delta, 1}(x),
\end{aligned}
$$

where $\delta=\frac{1+3 y-y^{3}}{y(y+1)}$.

Remarks

Pauley-Bamberg

Let $\mathrm{PB}(x)=\frac{x^{p+1}-1}{x-1}-2$, where p is an odd prime.

Let

$$
M=\left\{\left(\begin{array}{cc}
(1+i) / i & -1 \\
1 & (1-i) / i
\end{array}\right): i \in \mathbb{F}_{p}^{*}\right\}
$$

Then the elements of M have order p and $\operatorname{PB}(x)$ is a factor of $F_{\Psi}(x)$ for some $\Psi \in M$.

Remarks

Pauley-Bamberg

Let $\operatorname{PB}(x)=\frac{x^{p+1}-1}{x-1}-2$, where p is an odd prime.

Let

$$
M=\left\{\left(\begin{array}{cc}
(1+i) / i & -1 \\
1 & (1-i) / i
\end{array}\right): i \in \mathbb{F}_{p}^{*}\right\} .
$$

Then the elements of M have order p and $\operatorname{PB}(x)$ is a factor of $F_{\Psi}(x)$ for some $\Psi \in M$.

Furthermore, all polynomials that are specialisations of an orbit polynomial O_{G}, where $|G|=p$, are equivalent.

Remarks

Feng-Lu

Feng and Lu (2021) showed that

$$
\mathrm{FL}_{n}(x):=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}
$$

satisfies \star, where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

Remarks

Feng-Lu

Feng and Lu (2021) showed that

$$
\mathrm{FL}_{n}(x):=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}
$$

satisfies \star, where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

We have

$$
\mathrm{FL}_{3}(x)=P_{0,-\left(\delta+\delta^{-1}\right)}(x) \in \mathbb{F}_{q}[x] .
$$

Not every irreducible cubic satisfying \star is equivalent to one of the form $\mathrm{FL}_{3}(x)$, and so this construction is a proper subset of ours for the case $m=3$.

Remarks

Feng-Lu

Let $\mathrm{FL}_{n}(x)=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}$, where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

$$
\begin{aligned}
& \text { Let } C_{n}=\left\{\left(\begin{array}{cc}
\lambda \delta^{q}-\delta & 1-\lambda \\
\lambda-1 & \delta^{q}-\lambda \delta
\end{array}\right): \lambda^{n}=1,\right\} \text {. Then } \\
& \qquad H_{\mathrm{FL} L_{n}}(z, w)=\prod_{\psi \in C_{n} \backslash\{\prime\}} H_{\psi}(z, w)
\end{aligned}
$$

and

$$
\mathrm{FL}_{n}(x)=\prod_{\Psi \in C_{n}}(x-[\Psi](y))
$$

for some y.

Remarks

Feng-Lu

Let $\mathrm{FL}_{n}(x)=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}$, where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

$$
\begin{aligned}
& \text { Let } C_{n}=\left\{\left(\begin{array}{cc}
\lambda \delta^{q}-\delta & 1-\lambda \\
\lambda-1 & \delta^{q}-\lambda \delta
\end{array}\right): \lambda^{n}=1,\right\} \text {. Then } \\
& \qquad H_{\mathrm{FL} L_{n}}(z, w)=\prod_{\Psi \in C_{n} \backslash\{1\}} H_{\psi}(z, w)
\end{aligned}
$$

and

$$
\mathrm{FL}_{\mathrm{n}}(x)=\prod_{\Psi \in C_{n}}(x-[\Psi](y))
$$

for some y. For different choices of y we obtain new examples inequivalent to $\mathrm{FL}_{n}(x)$.

Quartics

Theorem
If $P(x)$ is an irreducible quartic satisfying \star, then H_{P} is absolutely irreducible.
From Magma computation:

- there are irreducible quartic polynomials satisfying \star for every $q<9$. For each of these polynomials P, H_{P} is absolutely irreducible (which never occurs in the cubic case).
- there are no irreducible quartic polynomials satisfying \star for $9 \leq q \leq 23$.

Quartics

Theorem
If $P(x)$ is an irreducible quartic satisfying \star, then H_{P} is absolutely irreducible.
From Magma computation:

- there are irreducible quartic polynomials satisfying \star for every $q<9$. For each of these polynomials P, H_{P} is absolutely irreducible (which never occurs in the cubic case).
- there are no irreducible quartic polynomials satisfying \star for $9 \leq q \leq 23$.

Following the method of Bartoli-Timpanella in using the Aubry-Perret bound on curves, we can conclude there are no quartics satisfying \star for $q>409$.

Summary

In summary:

- We can explain the known examples using a common approach.
- We can use this to extend the known families to new inequivalent examples of the same degree.

Summary

In summary:

- We can explain the known examples using a common approach.
- We can use this to extend the known families to new inequivalent examples of the same degree.

Preprint: Cyclic 2-Spreads in V $(6, q)$ and Flag-Transitive Affine Linear Spaces (arXiv:2309.06872)

Thank you for your attention!

