On the isomorphism of certain Q-polynomial association schemes

Giusy Monzillo
(joint work with Alessandro Siciliano)

18th June 2019

Association Schemes

Association Schemes

$$
\begin{aligned}
& X=\text { finite set, }|X| \geq 2 \\
& d=\text { positive integer } \\
& R=\left\{R_{0}, \ldots, R_{d}\right\}, R_{i} \subseteq X \times X
\end{aligned}
$$

Association Schemes

$$
\begin{aligned}
& X=\text { finite set, }|X| \geq 2 \\
& d=\text { positive integer } \\
& R=\left\{R_{0}, \ldots, R_{d}\right\}, R_{i} \subseteq X \times X
\end{aligned}
$$

Definition
(X, R) is a d-class association scheme if:
A1. R is a partition of $X \times X$ with $R_{0}=\{(x, x) \mid x \in X\}$;
A2. $R_{i}^{-1}=\left\{(y, x) \mid(x, y) \in R_{i}\right\}=R_{i}, i=0, \ldots, d$;
A3. for each $(x, y) \in R_{k}$,

$$
p_{i, j}^{(k)}=\left|\left\{z \in X \mid(x, z) \in R_{i},(z, y) \in R_{j}\right\}\right|=p_{j, i}^{(k)}
$$

does not depend on (x, y).

Definition

Two schemes $\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ and $\left(X^{\prime},\left\{R_{i}^{\prime}\right\}_{0 \leq i \leq d}\right)$ are isomorphic if there exists a bijection φ from X to X^{\prime} and a permutation σ of $\{1, \ldots, d\}$ such that

$$
(x, y) \in R_{i} \Longleftrightarrow(\varphi(x), \varphi(y)) \in R_{\sigma(i)}^{\prime} .
$$

The Bose-Mesner Algebra

The Bose-Mesner Algebra

$\mathbb{R}(X, X)=$ the set of all the $|X|$-matrices over \mathbb{R}
Definition
$A_{i} \in \mathbb{R}(X, X)$ with

$$
A_{i}(x, y)= \begin{cases}1 & \text { if }(x, y) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

is called the adjacency matrix of R_{i}.

Theorem (Bose-Mesner, 1952)

Let (X, R) be an association scheme with d classes.
Then

$$
\mathcal{A}=\left\langle A_{0}, \ldots, A_{d}\right\rangle_{\mathbb{R}}
$$

is a commutative subalgebra in $\mathbb{R}(X, X)$ such that:
i. $\operatorname{dim} \mathcal{A}=d+1$;
ii. $D=D^{T}$, for each $D \in \mathcal{A}$.
\mathcal{A} is the so-called Bose-Mesner algebra of (X, R).

Corollary

i. \mathcal{A} admits $d+1$ common maximal eigen-spaces V_{0}, \ldots, V_{d}, where $V_{0}=\langle\mathbf{1}\rangle$, such that

$$
\mathbb{R}^{|X|}=V_{0} \perp \ldots \perp V_{d}
$$

Corollary

i. \mathcal{A} admits $d+1$ common maximal eigen-spaces V_{0}, \ldots, V_{d}, where $V_{0}=\langle\mathbf{1}\rangle$, such that

$$
\mathbb{R}^{|X|}=V_{0} \perp \ldots \perp V_{d}
$$

ii. \mathcal{A} admits a unique basis of minimal idempotent matrices $\left\{E_{0}, \ldots, E_{d}\right\}$.

The Eigenmatrices

Definition

The matrices P and Q such that

$$
\left(A_{0} A_{1} \ldots A_{d}\right)=\left(E_{0} E_{1} \ldots E_{d}\right) P
$$

and

$$
\left(E_{0} E_{1} \ldots E_{d}\right)=|X|^{-1}\left(A_{0} A_{1} \ldots A_{d}\right) Q
$$

are the first and the second eigenmatrix of (X, R), respectively.

Definition

A scheme is P-polynomial if, after a reordering of the relations, there are polynomials p_{i} of degree i such that $A_{i}=p_{i}\left(A_{1}\right)$.

Definition

A scheme is P-polynomial if, after a reordering of the relations, there are polynomials p_{i} of degree i such that $A_{i}=p_{i}\left(A_{1}\right)$.

A scheme is Q-polynomial if, after a reordering of the eigenspaces, there are polynomials q_{i} of degree i such that $E_{i}=q_{i}\left(E_{1}\right)$, where multiplication is done entrywise.

The Hollmann-Xiang association scheme

The Hollmann-Xiang association scheme

Let \mathcal{C} be a non-degenerate conic in $\mathrm{PG}\left(2, q^{2}\right)$:

$$
\mathcal{C}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle: t \in \mathbb{F}_{q^{2}}\right\} \cup\{\langle(0,0,1)\rangle\}
$$

A line ℓ of $\operatorname{PG}\left(2, q^{2}\right)$ is called a passant if $|\ell \cap \mathcal{C}|=0$.

The Hollmann-Xiang association scheme

Let \mathcal{C} be a non-degenerate conic in $\mathrm{PG}\left(2, q^{2}\right)$:

$$
\mathcal{C}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle: t \in \mathbb{F}_{q^{2}}\right\} \cup\{\langle(0,0,1)\rangle\}
$$

A line ℓ of $\operatorname{PG}\left(2, q^{2}\right)$ is called a passant if $|\ell \cap \mathcal{C}|=0$.

Let $\overline{\mathcal{C}}$ be the extension of \mathcal{C} in $\operatorname{PG}\left(2, q^{4}\right)$.
An elliptic line of $\overline{\mathcal{C}}$ is the extension $\bar{\ell}$ of a passant ℓ of \mathcal{C}.

The Hollmann-Xiang association scheme

Let \mathcal{C} be a non-degenerate conic in $\mathrm{PG}\left(2, q^{2}\right)$:

$$
\mathcal{C}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle: t \in \mathbb{F}_{q^{2}}\right\} \cup\{\langle(0,0,1)\rangle\}
$$

A line ℓ of $\mathrm{PG}\left(2, q^{2}\right)$ is called a passant if $|\ell \cap \mathcal{C}|=0$.

Let $\overline{\mathcal{C}}$ be the extension of \mathcal{C} in $\operatorname{PG}\left(2, q^{4}\right)$.
An elliptic line of $\overline{\mathcal{C}}$ is the extension $\bar{\ell}$ of a passant ℓ of \mathcal{C}.
Then

$$
\bar{\ell} \cap \overline{\mathcal{C}}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle,\left\langle\left(1, t^{q^{2}}, t^{2 q^{2}}\right)\right\rangle\right\},
$$

for some $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$.

$$
\begin{aligned}
& \mathcal{E}=\text { the set of all the elliptic lines of } \overline{\mathcal{C}} \\
& \mathcal{X}=\text { the set of all pairs } \mathbf{t}=\left\{t, t^{q^{2}}\right\} \text { with } t \text { in } \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}
\end{aligned}
$$

$\mathcal{E}=$ the set of all the elliptic lines of $\overline{\mathcal{C}}$ $\mathcal{X}=$ the set of all pairs $\mathbf{t}=\left\{t, t^{q^{2}}\right\}$ with t in $\mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$

The identification

$$
\begin{aligned}
\xi: \mathbb{F}_{q^{4}} \cup\{\infty\} & \longleftrightarrow \overline{\mathcal{C}} \\
t & \longleftrightarrow\left\langle\left(1, t, t^{2}\right)\right\rangle \\
\infty & \longleftrightarrow\langle(0,0,1)\rangle
\end{aligned}
$$

induces the bijection

$$
\begin{array}{ccc}
\mathcal{X} & \longleftrightarrow \mathcal{E} \\
\mathbf{t}=\left\{t, t^{q^{2}}\right\} & \longleftrightarrow & \ell_{\mathbf{t}}
\end{array}
$$

where $\ell_{\mathbf{t}}=\bar{\ell}$ with $\bar{\ell} \cap \overline{\mathcal{C}}=\left\{\left\langle\left(1, t, t^{2}\right)\right\rangle,\left\langle\left(1, t^{q^{2}}, t^{2 q^{2}}\right)\right\rangle\right\}$.

q even

For any two distinct pairs $\mathbf{s}=\left\{s, s^{q^{2}}\right\}, \mathbf{t}=\left\{t, t^{q^{2}}\right\} \in \mathcal{X}$, let

$$
\rho(s, t)=\frac{(s+t)\left(s^{q^{2}}+t^{q^{2}}\right)}{\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)} \in \mathbb{F}_{q^{2}} \backslash\{0,1\}
$$

Note that $\rho(s, t)$ is the cross-ratio of $\left(s, s^{q^{2}}, t, t^{q^{2}}\right)$.

q even

For any two distinct pairs $\mathbf{s}=\left\{s, s^{q^{2}}\right\}, \mathbf{t}=\left\{t, t^{q^{2}}\right\} \in \mathcal{X}$, let

$$
\rho(s, t)=\frac{(s+t)\left(s^{q^{2}}+t^{q^{2}}\right)}{\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)} \in \mathbb{F}_{q^{2}} \backslash\{0,1\}
$$

Note that $\rho(s, t)$ is the cross-ratio of $\left(s, s^{q^{2}}, t, t^{q^{2}}\right)$.
From the properties of the cross-ratio it is possible to define the cross-ratio of $\{\mathbf{s}, \mathbf{t}\}$ as the pair

$$
\left\{\rho(s, t), \rho(s, t)^{-1}\right\}
$$

Theorem (Hollmann-Xiang, 2006)
Under the identification ξ, the action of $\operatorname{PGL}\left(2, q^{2}\right)$ on $\mathcal{E} \times \mathcal{E}$ gives rise to an association scheme on \mathcal{X} with $q^{2} / 2-1$ classes $R_{\left\{\lambda, \lambda^{-1}\right\}}$, $\lambda \in \mathbb{F}_{q^{2}} \backslash\{0,1\}$, where

$$
(\mathbf{s}, \mathbf{t}) \in R_{\left\{\lambda, \lambda^{-1}\right\}} \Longleftrightarrow\left\{\rho(s, t), \rho(s, t)^{-1}\right\}=\left\{\lambda, \lambda^{-1}\right\}
$$

The fusion scheme

The fusion scheme

$\mathbf{T}_{0}\left(q^{r}\right)=$ the set of all the elements of $\mathbb{F}_{q^{r}}$ with absolute trace zero

$$
\mathbf{T}_{0}=\mathbf{T}_{0}\left(q^{2}\right) ; \quad \mathbf{S}_{0}^{*}=\mathbf{T}_{0}(q) \backslash\{0\} ; \quad \mathbf{S}_{1}=\mathbb{F}_{q} \backslash \mathbf{S}_{0} .
$$

The fusion scheme

$\mathbf{T}_{0}\left(q^{r}\right)=$ the set of all the elements of $\mathbb{F}_{q^{r}}$ with absolute trace zero

$$
\mathbf{T}_{0}=\mathbf{T}_{0}\left(q^{2}\right) ; \quad \mathbf{S}_{0}^{*}=\mathbf{T}_{0}(q) \backslash\{0\} ; \quad \mathbf{S}_{1}=\mathbb{F}_{q} \backslash \mathbf{S}_{0} .
$$

For any two distinct pairs $\mathbf{s}, \mathbf{t} \in \mathcal{X}$, define

$$
\widehat{\rho}(\mathbf{s}, \mathbf{t})=\frac{1}{\rho(s, t)+\rho(s, t)^{-1}}
$$

Since

$$
\widehat{\rho}(\mathbf{s}, \mathbf{t})=\left(\frac{1}{\rho(s, t)+1}\right)^{2}+\left(\frac{1}{\rho(s, t)+1}\right)
$$

then

$$
\operatorname{Im} \widehat{\rho} \subset \mathbf{T}_{0}
$$

Theorem (Hollmann-Xiang, 2006)
The following relations are defined on \mathcal{X} :
$R_{1}:(\mathrm{s}, \mathrm{t}) \in R_{1}$ if and only $\widehat{\rho}(s, t) \in \mathbf{S}_{0}^{*}$;
$R_{2}:(\mathrm{s}, \mathrm{t}) \in R_{2}$ if and only $\hat{\rho}(s, t) \in \mathbf{S}_{1}$;
$R_{3}:(\mathrm{s}, \mathrm{t}) \in R_{3}$ if and only $\hat{\rho}(s, t) \in \mathbf{T}_{0} \backslash \mathbb{F}_{q}$.

Theorem (Hollmann-Xiang, 2006)
The following relations are defined on \mathcal{X} :
$R_{1}:(\mathbf{s}, \mathbf{t}) \in R_{1}$ if and only $\widehat{\rho}(s, t) \in \mathbf{S}_{0}^{*}$;
$R_{2}:(\mathbf{s}, \mathbf{t}) \in R_{2}$ if and only $\hat{\rho}(s, t) \in \mathbf{S}_{1}$;
$R_{3}:(\mathrm{s}, \mathrm{t}) \in R_{3}$ if and only $\hat{\rho}(s, t) \in \mathbf{T}_{0} \backslash \mathbb{F}_{q}$.
Then $\left(\mathcal{X},\left\{R_{i}\right\}_{i=0}^{3}\right)$ is a 3-class association scheme which is a fusion of the previous scheme.

The Penttila-Williford association schemes

The Penttila-Williford association schemes

Assume q even, and let
$H\left(3, q^{2}\right)$ be the unitary polar space of rank 2 of $\mathrm{PG}\left(3, q^{2}\right)$;
$W(3, q)$ be a symplectic polar space of rank 2 embedded in $H\left(3, q^{2}\right)$;
$Q^{-}(3, q)$ be an orthogonal polar space of rank 1 embedded in $W(3, q)$.

For any line I of $H\left(3, q^{2}\right)$ disjoint from $W(3, q)$, let \mathcal{S}, denote the set of the (extended) lines of $W(3, q)$ that meet I.

For any line I of $H\left(3, q^{2}\right)$ disjoint from $W(3, q)$, let \mathcal{S}, denote the set of the (extended) lines of $W(3, q)$ that meet I.

Definition
A relative hemisystem of $H\left(3, q^{2}\right)$ with respect to $W(3, q)$ is a set \mathcal{H} of lines of $H\left(3, q^{2}\right)$ disjoint from $W(3, q)$ such that every point of $H\left(3, q^{2}\right)$ not in $W(3, q)$ lies on exactly $q / 2$ lines of \mathcal{H}.

Theorem (Penttila-Williford, 2011)
Let \mathcal{H} be a relative hemisystem of $H\left(3, q^{2}\right)$ with respect to $W(3, q)$. Then a Q-polynomial (not P-polynomial) 3-class association scheme is constructed on \mathcal{H} through the following relations:

Theorem (Penttila-Williford, 2011)

Let \mathcal{H} be a relative hemisystem of $H\left(3, q^{2}\right)$ with respect to $W(3, q)$. Then a Q-polynomial (not P-polynomial) 3-class association scheme is constructed on \mathcal{H} through the following relations:
$\widetilde{R}_{1}:(I, m) \in \widetilde{R}_{1}$ if and only $|/ \cap m|=1$;
$\widetilde{R}_{2}:(I, m) \in \widetilde{R}_{2}$ if and only $I \cap m=\emptyset$ and $\left|\mathcal{S}_{1} \cap \mathcal{S}_{m}\right|=1$;
$\widetilde{R}_{3}:(I, m) \in \widetilde{R}_{3}$ if and only $I \cap m=\emptyset$ are $\left|\mathcal{S}_{1} \cap \mathcal{S}_{m}\right|=q+1$.

The existence of relative hemisystems

$$
\begin{aligned}
& \mathrm{PO}^{-}(4, q)=\text { the stabilizer of } Q^{-}(3, q) \text { in } \operatorname{PGU}\left(4, q^{2}\right) \\
& \left.{\mathrm{P} \Omega^{-}}^{(} 4, q\right)=\text { the commutator subgroup of } \mathrm{PO}^{-}(4, q)
\end{aligned}
$$

The existence of relative hemisystems

$$
\begin{aligned}
& \mathrm{PO}^{-}(4, q)=\text { the stabilizer of } Q^{-}(3, q) \text { in } \operatorname{PGU}\left(4, q^{2}\right) \\
& {\mathrm{P} \Omega^{-}(4, q)}^{-} \text {the commutator subgroup of } \mathrm{PO}^{-}(4, q)
\end{aligned}
$$

Theorem (Penttila-Williford, 2011)
$\mathrm{P} \Omega^{-}(4, q)$ has two orbits on the lines of $H\left(3, q^{2}\right)$ disjoint from $W(3, q)$, both of them relative hemisystems with respect to $W(3, q)$.

Tanaka (private communication to Penttila and Williford)

The 3-class association schemes found by Hollmann and Xiang have the same parameters as the 3-class schemes derived from the Penttila-Williford relative hemisystems.

Tanaka (private communication to Penttila and Williford) The 3-class association schemes found by Hollmann and Xiang have the same parameters as the 3-class schemes derived from the Penttila-Williford relative hemisystems.

Question:
Are the above 3-class association schemes isomorphic?

The key-stone:
$\left(\operatorname{PSL}\left(2, q^{2}\right), \operatorname{PG}\left(1, q^{2}\right)\right)$ and $\left(\mathrm{P}^{-}(4, q), Q^{-}(3, q)\right)$ are permutationally isomorphic for all prime powers q.

A non-standard geometric setting

A non-standard geometric setting

From now on q is even.

$$
\widehat{V}=\left\{\left(\alpha, x^{q}, x, \beta\right): \alpha, \beta \in \mathbb{F}_{q}, x \in \mathbb{F}_{q^{2}}\right\} \hookrightarrow V\left(4, q^{2}\right)
$$

$W(\widehat{V})=$ the symplectic polar space arising from the intersection of $H\left(3, q^{2}\right)$ with $\operatorname{PG}(\widehat{V})$

$$
\begin{aligned}
\widehat{\mathcal{Q}}= & \left\{\left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle: t \in \mathbb{F}_{q^{2}}\right\} \cup\{\langle(0,0,0,1)\rangle\} \\
& \text { is a } Q^{-}(3, q) \text { of } W(\widehat{V})
\end{aligned}
$$

Let

$$
\begin{array}{rllc}
\theta: & \mathrm{PG}\left(1, q^{2}\right) & \longrightarrow & \widehat{\mathcal{Q}} \\
\langle(1, t)\rangle & \mapsto & \left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle \\
\langle(0,1)\rangle & \mapsto & \langle(0,0,0,1)\rangle
\end{array}
$$

and

$$
\begin{array}{rll}
\chi: \operatorname{PSL}\left(2, q^{2}\right) & \longrightarrow \mathrm{P} \Omega^{-}(\hat{V}) \\
g & \mapsto & g \otimes g^{q},
\end{array}
$$

where \otimes is the Kronecher product.

Proposition

(PSL $\left.\left(2, q^{2}\right), \mathrm{PG}\left(1, q^{2}\right)\right)$ and $\left(\mathrm{P} \Omega^{-}(\widehat{V}), \widehat{\mathcal{Q}}\right)$ are permutationally isomorphic (for all prime powers q), i.e.

is a commutative diagram.

The Pentilla-Williford relative hemisystem

For any $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, let

$$
\theta(t)=\left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle, \quad \theta\left(t^{q^{2}}\right)=\left\langle\left(1, t^{q^{3}}, t^{q^{2}}, t^{q^{3}+q^{2}}\right)\right\rangle
$$

and $M_{\mathbf{t}}=\left\langle\theta(t), \theta\left(t^{q^{2}}\right)\right\rangle$. Note that $M_{\mathbf{t}}$ is a line of $\operatorname{PG}\left(3, q^{4}\right)$.

The Pentilla-Williford relative hemisystem

For any $t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$, let

$$
\theta(t)=\left\langle\left(1, t^{q}, t, t^{q+1}\right)\right\rangle, \quad \theta\left(t^{q^{2}}\right)=\left\langle\left(1, t^{q^{3}}, t^{q^{2}}, t^{q^{3}+q^{2}}\right)\right\rangle
$$

and $M_{\mathbf{t}}=\left\langle\theta(t), \theta\left(t^{q^{2}}\right)\right\rangle$. Note that $M_{\mathbf{t}}$ is a line of $\operatorname{PG}\left(3, q^{4}\right)$.
Lemma
i. For each $\mathbf{t}=\left\{t, t^{q^{2}}\right\}, m_{\mathbf{t}}=M_{\mathbf{t}} \cap \mathrm{PG}\left(3, q^{2}\right)$ is a line of $H\left(3, q^{2}\right)$, which is disjoint from $W(\widehat{V})$.
ii. $\left\{m_{t}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}$ is one of the Penttila-Williford relative hemisystem.

Betting...

Betting...

Finding a bijection between the sets

$$
\mathcal{X}=\left\{\mathbf{t}=\left\{t, t^{q^{2}}\right\}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}
$$

and

$$
\mathcal{H}=\left\{m_{\mathbf{t}}: t \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}\right\}
$$

such that the relations respectively defined on them, after a proper reordering, are preserved.

Lemma
The map

$$
\begin{aligned}
\varphi: \mathcal{X} & \rightarrow \mathcal{H} \\
\mathbf{t} & \mapsto
\end{aligned} m_{\mathbf{t}}
$$

is a bijection.

Lemma

The map

$$
\begin{aligned}
\varphi: \mathcal{X} & \rightarrow \mathcal{H} \\
\mathbf{t} & \mapsto m_{\mathbf{t}}
\end{aligned}
$$

is a bijection.

Is φ the winning bijection?

A dual setting

A dual setting

The Klein correspondence κ (q even)
lines of $\mathrm{PG}\left(3, q^{2}\right) \longleftrightarrow$ points of $Q^{+}\left(5, q^{2}\right)$
lines of $H\left(3, q^{2}\right) \longleftrightarrow$ points of $Q^{-}(5, q)$
lines of $W(3, q) \quad \longleftrightarrow$ points of $Q(4, q)$.

The Klein correspondence κ (q even)
lines of $H\left(3, q^{2}\right) \quad \longleftrightarrow \quad$ points of $Q^{-}(5, q)$
lines of $W(\widehat{V}) \longleftrightarrow$ points of (which?) $Q(4, q)$.

Another non-standard geometric setting

$$
\begin{aligned}
& \widetilde{V}=\left\{\left(x, x^{q}, y, y^{q}, z, z^{q}\right): x, y, z \in \mathbb{F}_{q^{2}}\right\} \hookrightarrow V\left(6, q^{2}\right) \\
& \widetilde{\mathcal{Q}}: x z^{q}+x^{q} z+y^{q+1}=0 \text { is a } Q^{-}(5, q) \text { in } \operatorname{PG}(\widetilde{V}) \\
& \Gamma=\left\{\left\langle\left(x, x^{q}, c, c, z, z^{q}\right)\right\rangle: x, z \in \mathbb{F}_{q^{2}}, c \in \mathbb{F}_{q}\right\}
\end{aligned}
$$

Another non-standard geometric setting

$$
\begin{aligned}
& \widetilde{V}=\left\{\left(x, x^{q}, y, y^{q}, z, z^{q}\right): x, y, z \in \mathbb{F}_{q^{2}}\right\} \hookrightarrow V\left(6, q^{2}\right) \\
& \widetilde{\mathcal{Q}}: x z^{q}+x^{q} z+y^{q+1}=0 \text { is a } Q^{-}(5, q) \text { in } \operatorname{PG}(\widetilde{V}) \\
& \Gamma=\left\{\left\langle\left(x, x^{q}, c, c, z, z^{q}\right)\right\rangle: x, z \in \mathbb{F}_{q^{2}}, c \in \mathbb{F}_{q}\right\}
\end{aligned}
$$

Then

$$
Q(4, q)=\Gamma \cap \widetilde{\mathcal{Q}}=\kappa(W(\widehat{V}))
$$

Betting.

$$
m_{\mathbf{t}} \in \mathcal{H} \quad \stackrel{\kappa}{\longleftrightarrow} \quad P_{\mathbf{t}} \in Q^{-}(5, q) \backslash Q(4, q)
$$

$$
m_{\mathbf{t}} \in \mathcal{H} \quad \stackrel{\kappa}{\longleftrightarrow} \quad P_{\mathbf{t}} \in Q^{-}(5, q) \backslash Q(4, q)
$$

$$
\mathcal{S}_{m_{\mathrm{t}}} \stackrel{\kappa}{\longleftrightarrow} \widetilde{\mathcal{O}}_{\mathbf{t}}=Q(4, q) \cap P_{\mathbf{t}}^{\perp}
$$

Looking at some special planes of $\operatorname{PG}(\widetilde{V})$

Looking at some special planes of $\mathrm{PG}(\widetilde{V})$

For $\mathbf{s} \neq \mathbf{t}$, let

$$
\Pi_{\mathbf{s}, \mathbf{t}}=\left\langle\Gamma^{\perp}, P_{\mathbf{s}}, P_{\mathbf{t}}\right\rangle,
$$

and $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}$ be the restriction of \widetilde{Q} on $\Pi_{\mathrm{s}, \mathrm{t}}$.

Looking at some special planes of $\mathrm{PG}(\widetilde{V})$

For $\mathbf{s} \neq \mathbf{t}$, let

$$
\Pi_{\mathbf{s}, \mathbf{t}}=\left\langle\Gamma^{\perp}, P_{\mathbf{s}}, P_{\mathbf{t}}\right\rangle,
$$

and $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}$ be the restriction of \widetilde{Q} on $\Pi_{\mathrm{s}, \mathrm{t}}$.
Then

$$
\operatorname{Rad}\left(\Pi_{\mathbf{s}, \mathbf{t}}\right)=\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle
$$

Looking at some special planes of $\mathrm{PG}(\widetilde{V})$

For $\mathbf{s} \neq \mathbf{t}$, let

$$
\Pi_{\mathrm{s}, \mathbf{t}}=\left\langle\Gamma^{\perp}, P_{\mathbf{s}}, P_{\mathbf{t}}\right\rangle
$$

and $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}$ be the restriction of \widetilde{Q} on $\Pi_{\mathrm{s}, \mathrm{t}}$.
Then

$$
\operatorname{Rad}\left(\Pi_{\mathbf{s}, \mathbf{t}}\right)=\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle
$$

Two cases are possible:

$$
\begin{aligned}
& \widetilde{Q}_{\mathrm{s}, \mathrm{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right)=0 \\
& \widetilde{Q}_{\mathrm{s}, \mathrm{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right) \neq 0
\end{aligned}
$$

First case: $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right)=0$

$\Pi_{\mathrm{s}, \mathrm{t}} \cap Q^{-}(5, q)$ consists of two distinct lines through $\left\langle v_{\mathrm{s}, \mathbf{t}}\right\rangle$.

First case: $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right)=0$

$\Pi_{\mathrm{s}, \mathrm{t}} \cap Q^{-}(5, q)$ consists of two distinct lines through $\left\langle\mathrm{v}_{\mathrm{s}, \mathrm{t}}\right\rangle$.

Two sub-cases:
i. P_{s} and P_{t} are collinear in $Q^{-}(5, q)$
ii. P_{s} and P_{t} are NOT collinear in $Q^{-}(5, q)$

Subcase i. : P_{s} and P_{t} are collinear in $Q^{-}(5, q)$
P_{s} and P_{t} are collinear in $Q^{-}(5, q)$ if and only if $m_{\mathrm{s}}=\kappa^{-1}\left(P_{\mathrm{s}}\right)$ and $m_{\mathrm{t}}=\kappa^{-1}\left(P_{\mathrm{t}}\right)$ are concurrent in $H\left(3, q^{2}\right)$, that is $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{1}$.

Subcase i. : P_{s} and P_{t} are collinear in $Q^{-}(5, q)$
P_{s} and P_{t} are collinear in $Q^{-}(5, q)$ if and only if $m_{\mathrm{s}}=\kappa^{-1}\left(P_{\mathrm{s}}\right)$ and $m_{\mathrm{t}}=\kappa^{-1}\left(P_{\mathrm{t}}\right)$ are concurrent in $H\left(3, q^{2}\right)$, that is $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{1}$.

On the other hand, P_{s} and P_{t} are collinear in $Q^{-}(5, q)$ if and only if

$$
\frac{1}{\rho(s, t)+1}=\frac{\left(s+t^{q^{2}}\right)\left(s^{q^{2}}+t\right)}{\left(s^{q^{2}}+s\right)\left(t^{q^{2}}+t\right)} \in \mathbb{F}_{q}
$$

if and only if $\widehat{\rho}(\mathbf{s}, \mathbf{t}) \in \mathbf{S}_{0}^{*}$, that is $(\mathbf{s}, \mathbf{t}) \in R_{1}$.

Subcase ii. : P_{s} and P_{t} are NOT collinear in $Q^{-}(5, q)$
P_{s} and P_{t} are NOT collinear in $Q^{-}(5, q)$ if and only if $m_{\mathrm{s}}=\kappa^{-1}\left(P_{\mathrm{s}}\right)$ and $m_{\mathrm{t}}=\kappa^{-1}\left(P_{\mathrm{t}}\right)$ are NOT concurrent in $H\left(3, q^{2}\right)$, that is $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{2}$.

Subcase ii. : $P_{\mathbf{s}}$ and $P_{\mathbf{t}}$ are NOT collinear in $Q^{-}(5, q)$
P_{s} and P_{t} are NOT collinear in $Q^{-}(5, q)$ if and only if $m_{\mathrm{s}}=\kappa^{-1}\left(P_{\mathrm{s}}\right)$ and $m_{\mathrm{t}}=\kappa^{-1}\left(P_{\mathrm{t}}\right)$ are NOT concurrent in $H\left(3, q^{2}\right)$, that is $\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right) \in \widetilde{R}_{2}$.

On the other hand, P_{s} and P_{t} are NOT collinear in $Q^{-}(5, q)$ if and only if

$$
\left(\frac{1}{\rho(s, t)+1}\right)^{q}+\frac{1}{\rho(s, t)+1}=1
$$

that is $\widehat{\rho}(\mathbf{s}, \mathbf{t}) \in \mathrm{S}_{1}$, i.e. $(\mathbf{s}, \mathbf{t}) \in R_{2}$.

Second case: $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right) \neq 0$

$\Pi_{\mathbf{s}, \mathbf{t}} \cap Q^{-}(5, q)$ is a non-degenerate conic with nucleus $\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle$.

Second case: $\widetilde{Q}_{\mathbf{s}, \mathbf{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right) \neq 0$

$\Pi_{\mathrm{s}, \mathrm{t}} \cap Q^{-}(5, q)$ is a non-degenerate conic with nucleus $\left\langle v_{\mathbf{s}, \mathbf{t}}\right\rangle$.
Then $\left|\widetilde{\mathcal{O}}_{\mathrm{t}} \cap \widetilde{\mathcal{O}}_{\mathrm{s}}\right|=q+1$ if and only if
$\mathcal{S}_{m_{\mathrm{t}}}=\kappa^{-1}\left(\widetilde{\mathcal{O}_{\mathrm{t}}}\right)$ and $\mathcal{S}_{m_{\mathrm{s}}}=\kappa^{-1}\left(\widetilde{\mathcal{O}}_{\mathrm{s}}\right)$ meet in $q+1$ lines of $W(\widehat{V})$, that is $\left(m_{\mathbf{t}}, m_{\mathbf{s}}\right) \in \widetilde{R}_{3}$.

Second case: $\widetilde{Q}_{\mathbf{s}, \mathbf{t}}\left(v_{\mathrm{s}, \mathrm{t}}\right) \neq 0$

$\Pi_{\mathrm{s}, \mathrm{t}} \cap Q^{-}(5, q)$ is a non-degenerate conic with nucleus $\left\langle v_{\mathrm{s}, \mathrm{t}}\right\rangle$.
Then $\left|\widetilde{\mathcal{O}}_{\mathrm{t}} \cap \widetilde{\mathcal{O}}_{\mathrm{s}}\right|=q+1$ if and only if
$\mathcal{S}_{m_{t}}=\kappa^{-1}\left(\widetilde{\mathcal{O}}_{\mathfrak{t}}\right)$ and $\mathcal{S}_{m_{\mathrm{s}}}=\kappa^{-1}\left(\widetilde{\mathcal{O}}_{\mathrm{s}}\right)$ meet in $q+1$ lines of $W(\widehat{V})$, that is $\left(m_{\mathrm{t}}, m_{\mathrm{s}}\right) \in \widetilde{R}_{3}$.

On the other hand, $\widetilde{Q}_{\mathrm{s}, \mathrm{t}}\left(\mathrm{v}_{\mathrm{s}, \mathrm{t}}\right) \neq 0$ if and only if $(\mathbf{s}, \mathbf{t}) \in R_{3}$ by exclusion.

Summing up...

The bijection

$$
\begin{aligned}
& \varphi: \mathcal{X} \rightarrow \mathcal{H} \\
& \mathbf{t} \mapsto \\
& m_{\mathbf{t}}
\end{aligned}
$$

enjoys the property

$$
(\mathbf{s}, \mathbf{t}) \in R_{i} \Longleftrightarrow\left(m_{\mathbf{s}}, m_{\mathbf{t}}\right)=\varphi(\mathbf{s}, \mathbf{t}) \in \widetilde{R}_{i}, \quad i=1,2,3,
$$

i.e. ..

Theorem G.Monzillo - A. Siciliano
The Hollmann-Xiang and Pentilla-Williford Q-polynomial (but not P-polynomial) association schemes are isomorphic.

