Unveil the ghosts

Silvia Pagani (Università Cattolica del Sacro Cuore, Brescia, Italy) Finite Geometry \& Friends
VUB Brussels, September 20, 2023
joint work with Marco Della Vedova (Chalmers) and Silvia Pianta (UniCatt)

Ghosts

$$
\text { Let } q=p^{h} \text {. }
$$

Definition

A (multi-)subset S of $\operatorname{PG}(n, q)$ is said to be a ghost if it has constant intersection size (modulo p) with hyperplanes.

- By multisets we mean multisets modulo p, where each point may be counted up to $p-1$ times.
- Examples of ghosts: the empty set, k-dimensional subspaces ($k \geq 1$).
- The (multi-)complement of a ghost is a ghost.
- Operation to be considered: multiset sum modulo p.

Polynomial characterization

Let $\mathbf{X}=\left(X_{0}, \ldots, X_{n}\right)$.
The Rédei factor of a point $P=\left(p_{0}, \ldots, p_{n}\right) \in \operatorname{PG}(n, q)$ is

$$
P \cdot \mathbf{X}=p_{0} X_{0}+\ldots p_{n} X_{n} .
$$

Let $S=\left\{P_{1}, \ldots, P_{s}\right\}$ be a (multi-)subset of PG(n, q). The power
sum polynomial G^{S} of S is defined as

$$
G^{S}(\mathbf{X})=\sum_{i=1}^{s}\left(P_{i} \cdot \mathbf{X}\right)^{q-1}
$$

Theorem
S is a ghost if and only if $G^{S} \equiv 0$.

In the plane

From now on: $n=2$.

Examples of ghosts of PG $(2, q)$:

- lines;
- for q square: Baer subplanes and unitals;
- for q even: hyperovals.

Coding theory

Let C denote the code of points and lines of $\operatorname{PG}(2, q)$.

Coding theory

Let C denote the code of points and lines of $\operatorname{PG}(2, q)$.

Both C and C^{\perp} are (isomorphic to) sets of ghosts.

Coding theory

Let C denote the code of points and lines of $\operatorname{PG}(2, q)$.

Both C and C^{\perp} are (isomorphic to) sets of ghosts.

Theorem (Della Vedova, P., Pianta 2023)
Ghosts, endowed with the multiset sum modulo p, constitute a vector space \mathcal{G} over \mathbb{F}_{p}.
Moreover $\mathcal{G}=\left\langle C, C^{\perp}\right\rangle=C^{\perp} \oplus\langle\mathbf{j}\rangle$ and
$\mathcal{G}=C^{\perp} \sqcup\left(C^{\perp}+\mathbf{j}\right) \sqcup\left(C^{\perp}+2 \mathbf{j}\right) \sqcup \ldots \sqcup\left(C^{\perp}+(p-1) \mathbf{j}\right)$.

Dimensions

It results

$$
\begin{aligned}
\operatorname{dim} C & =\binom{p+1}{2}^{h}+1 \\
\operatorname{dim} C^{\perp} & =p^{2 h}+p^{h}-\binom{p+1}{2}^{h} \\
\operatorname{dim} \mathcal{G} & =p^{2 h}+p^{h}+1-\binom{p+1}{2}^{h}
\end{aligned}
$$

If $q=p$ prime, then $\mathcal{G}=C$ and all ghosts are multi-sums of lines.

If $h>1$, then $C^{\perp} \nless C$ and other ghosts arise.

Ghosts of PG(2, 2) and PG(2,3)

Ghosts of $\operatorname{PG}(2,2)$ are 16: the empty set, 7 lines, 7 affine planes, $\mathrm{PG}(2,2)$.

Ghosts of PG(2, 2) and PG(2,3)

Ghosts of $\mathrm{PG}(2,2)$ are 16: the empty set, 7 lines, 7 affine planes, $\mathrm{PG}(2,2)$.

In PG(2,3) points may be counted twice. There are 3^{7} ghosts, including multiset sums of double lines and simple lines.

Ghosts of PG(2,4)

size	ghost	size	ghost	size	ghost	size	ghost
0		21		8	Λ	13	
5		16		9	\square	12	\square
6		15		10)	11	
7		14					

Projective triads

Definition

Let q be even. Let $\ell_{1}, \ell_{2}, \ell_{3}$ be three lines through a point P. Let $B_{\iota} \subset \ell_{\iota} \backslash\{P\}$, $\left|B_{\iota}\right|=\frac{q}{2}, \iota \in\{1,2,3\}$, such that a line connecting a point of B_{i} to a point of B_{j} also meets $B_{k},\{i, j, k\}=\{1,2,3\}$. The set $B_{1} \cup B_{2} \cup B_{3} \cup\{P\}$ is called projective triad.

A projective triad is a minimal blocking set of $\mathrm{PG}(2, q)$ of size $\frac{3 q}{2}+1$ and a ghost.

Linear sets

Definition

Let $\operatorname{PG}\left(r-1, q^{s}\right)$ be defined from $V\left(r, q^{s}\right)$. Let $U \leq_{\mathbb{F}_{q}} V\left(r, q^{s}\right)$, $\operatorname{dim} U=t$. A subset L of $\operatorname{PG}\left(r-1, q^{s}\right)$ is an $\mathbb{F}_{q^{-}}$-linear set of rank t if it contains the spans (over $\mathbb{F}_{q^{s}}$) of non-zero vectors of U :

$$
L=L_{U}=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{s}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\}
$$

Property: for each projective subspace \wedge intersecting L_{U}, it results $\left|L_{U} \cap \Lambda\right| \equiv 1$ modq.

Therefore, a linear set $L \subseteq \operatorname{PG}\left(2, q^{s}\right)$ is a ghost \Longleftrightarrow it is a blocking set $\Longleftrightarrow t>$ s.

Linear sets

In PG $(2,8)(t>3)$:

- linear sets of rank 4: lines; projective triads; configuration of 15 points;

Linear sets

In PG $(2,8)(t>3)$:

- linear sets of rank 4: lines; projective triads; configuration of 15 points;

- linear sets of rank 5 include: lines; configuration of 25 points;

Linear sets

In PG(2, 8$)(t>3):$

- linear sets of rank 4: lines; projective triads; configuration of 15 points;

- linear sets of rank 5 include: lines; configuration of 25 points;

- linear sets of rank $t>6: \operatorname{PG}(2,8)$.

Thank you for your attention!

