Unveil the ghosts

Silvia Pagani (Università Cattolica del Sacro Cuore, Brescia, Italy) Finite Geometry & Friends VUB Brussels, September 20, 2023

joint work with Marco Della Vedova (Chalmers) and Silvia Pianta (UniCatt)

Ghosts

Let $q = p^h$.

Definition

A (multi-)subset S of PG(n,q) is said to be a ghost if it has constant intersection size (modulo p) with hyperplanes.

- By multisets we mean multisets modulo p, where each point may be counted up to p 1 times.
- Examples of ghosts: the empty set, k-dimensional subspaces ($k \ge 1$).
- The (multi-)complement of a ghost is a ghost.
- Operation to be considered: multiset sum modulo *p*.

Polynomial characterization

Let
$$X = (X_0, ..., X_n)$$
.

The Rédei factor of a point $P = (p_0, \ldots, p_n) \in PG(n, q)$ is

$$P \cdot \mathbf{X} = p_0 X_0 + \ldots p_n X_n.$$

Let $S = \{P_1, ..., P_s\}$ be a (multi-)subset of PG(n, q). The power sum polynomial G^S of S is defined as

$$G^{\mathsf{S}}(\mathbf{X}) = \sum_{i=1}^{\mathsf{S}} (P_i \cdot \mathbf{X})^{q-1}.$$

Theorem

S is a ghost if and only if $G^S \equiv 0$.

From now on: n = 2.

Examples of ghosts of PG(2, q):

- lines;
- for q square: Baer subplanes and unitals;
- for q even: hyperovals.

Let C denote the code of points and lines of PG(2, q).

Let C denote the code of points and lines of PG(2, q).

Both C and C^{\perp} are (isomorphic to) sets of ghosts.

Let C denote the code of points and lines of PG(2, q).

Both C and C^{\perp} are (isomorphic to) sets of ghosts.

Theorem (Della Vedova, P., Pianta 2023)

Ghosts, endowed with the multiset sum modulo p, constitute a vector space G over \mathbb{F}_p .

Moreover $\mathcal{G} = \langle C, C^{\perp} \rangle = C^{\perp} \oplus \langle \mathbf{j} \rangle$ and $\mathcal{G} = C^{\perp} \sqcup (C^{\perp} + \mathbf{j}) \sqcup (C^{\perp} + 2\mathbf{j}) \sqcup \ldots \sqcup (C^{\perp} + (p - 1)\mathbf{j}).$

Dimensions

It results

$$\dim C = {\binom{p+1}{2}}^h + 1,$$

$$\dim C^{\perp} = p^{2h} + p^h - {\binom{p+1}{2}}^h,$$

$$\dim \mathcal{G} = p^{2h} + p^h + 1 - {\binom{p+1}{2}}^h$$

If q = p prime, then $\mathcal{G} = C$ and all ghosts are multi-sums of lines.

If h > 1, then $C^{\perp} \leq C$ and other ghosts arise.

Ghosts of PG(2,2) are 16: the empty set, 7 lines, 7 affine planes, PG(2,2).

Ghosts of PG(2,2) are 16: the empty set, 7 lines, 7 affine planes, PG(2,2).

In PG(2,3) points may be counted twice. There are 3⁷ ghosts, including multiset sums of double lines and simple lines.

Ghosts of PG(2, 4)

size	ghost	size	ghost	size	ghost	size	ghost
0	\bigcirc	21		8	\bigwedge	13	$ \land $
5	/	16		9	\bigtriangleup	12	
6	\bigcirc	15		10	0	11	$ \bigcirc $
7	\bigotimes	14	\bigcirc				

Definition

Let q be even. Let ℓ_1, ℓ_2, ℓ_3 be three lines through a point P. Let $B_{\iota} \subset \ell_{\iota} \setminus \{P\}$, $|B_{\iota}| = \frac{q}{2}, \iota \in \{1, 2, 3\}$, such that a line connecting a point of B_i to a point of B_j also meets B_k , $\{i, j, k\} = \{1, 2, 3\}$. The set $B_1 \cup B_2 \cup B_3 \cup \{P\}$ is called projective triad.

A projective triad is a minimal blocking set of PG(2, q) of size $\frac{3q}{2} + 1$ and a ghost.

Definition

Let $PG(r - 1, q^s)$ be defined from $V(r, q^s)$. Let $U \leq_{\mathbb{F}_q} V(r, q^s)$, dim U = t. A subset L of $PG(r - 1, q^s)$ is an \mathbb{F}_q -linear set of rank t if it contains the spans (over \mathbb{F}_{q^s}) of non-zero vectors of U:

$$L = L_U = \{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^{\mathsf{s}}}} : \mathbf{u} \in U \setminus \{\mathbf{O}\} \}.$$

Property: for each projective subspace Λ intersecting L_U , it results $|L_U \cap \Lambda| \equiv 1 \mod q$.

Therefore, a linear set $L \subseteq PG(2, q^s)$ is a ghost \iff it is a blocking set $\iff t > s$.

Linear sets

In PG(2, 8) (t > 3):

• linear sets of rank 4: lines; projective triads; configuration of 15 points;

Linear sets

In PG(2, 8) (t > 3):

• linear sets of rank 4: lines; projective triads; configuration of 15 points;

 linear sets of rank 5 include: lines; configuration of 25 points;

Linear sets

In PG(2, 8) (t > 3):

• linear sets of rank 4: lines; projective triads; configuration of 15 points;

 linear sets of rank 5 include: lines; configuration of 25 points;

• linear sets of rank t > 6: PG(2,8).

Thank you for your attention!