Projective Metrics

Hugo Sauerbier Couvée

Technical University of Munich (TUM)
with Gabor Riccardi, University of Pavia
20 September 2023

- Introduced by Gabidulin and Simonis (1997)
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.
- Potential applications for the theory of coset leaders, code-based cryptography
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.
- Potential applications for the theory of coset leaders, code-based cryptography
- Elementary, but it's possibly a new perspective on known familiar concepts
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.
- Potential applications for the theory of coset leaders, code-based cryptography
- Elementary, but it's possibly a new perspective on known familiar concepts
- Sweet-spot for research on metrics?
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.
- Potential applications for the theory of coset leaders, code-based cryptography
- Elementary, but it's possibly a new perspective on known familiar concepts
- Sweet-spot for research on metrics?
\leftarrow more specific/structured
- Introduced by Gabidulin and Simonis (1997)
- A generalization of many metrics in coding theory
- Related to (projective) finite geometry, combinatorics, matroids, graph theory, etc.
- Potential applications for the theory of coset leaders, code-based cryptography
- Elementary, but it's possibly a new perspective on known familiar concepts
- Sweet-spot for research on metrics?

Hamming metric	Projective metrics	Translation-invariant metrics
\leftarrow more specific/structured		more general \rightarrow

Stongly regular Clebsch graph / Greenwood-Gleason graph

Vertices: vectors of \mathbb{F}_{2}^{4}

Distance from 0000 to 1101:

Distance from 0000 to 1101: red: 3,

Distance from 0000 to 1101: red: 3, blue: 2

Graph distance on Clebsch graph $=$ Phase-rotation metric/distance on \mathbb{F}_{2}^{4}

Graph distance on Clebsch graph $=$ Phase-rotation metric/distance on \mathbb{F}_{2}^{4} An edge is a Hamming error or the all-bits-flip error

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Hamming }}=3
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Hamming }}=3
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \quad \mathrm{wt}_{\operatorname{Rank}}=3
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Hamming }}=3
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\operatorname{Rank}}=3
$$

Sum-Rank metric

$$
\left(\begin{array}{ccc|ccc|ccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Sum-rank }}=3+1+2=6
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Hamming }}=3
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Rank }}=3
$$

Sum-Rank metric

$$
\left(\begin{array}{ccc|ccc|ccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Sum-rank }}=3+1+2=6
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Cover }}=3
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Hamming }}=3
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Rank }}=3
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Sum-rank }}=3+1+2=6
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Cover }}=3
$$

Phase-rotation metric

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Phase-Rot }}=1+1=2
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Hamming }}=3
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \quad \mathrm{wt}_{\text {Rank }}=3
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathrm{wt}_{\text {Sum-rank }}=3+1+2=6
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \quad \rightarrow \quad \mathrm{wt}_{\text {Cover }}=3
$$

Phase-rotation metric

More: burst metric, tensor metric, combinatorical metrics, etc.

Projective metrics

Let V be a vector space over finite field \mathbb{F}_{q}.

Let V be a vector space over finite field \mathbb{F}_{q}.
Translation invariant metric/distance function $d(\cdot, \cdot)$ on V satisfies

$$
d(x, y)=d(0, y-x)=\operatorname{wt}(y-x)
$$

for some weight function $w t(\cdot): V \rightarrow \mathbb{N}_{\geq 0}$.

Projective metrics

Let V be a vector space over finite field \mathbb{F}_{q}.
Translation invariant metric/distance function $d(\cdot, \cdot)$ on V satisfies

$$
d(x, y)=d(0, y-x)=\operatorname{wt}(y-x)
$$

for some weight function $w t(\cdot): V \rightarrow \mathbb{N}_{\geq 0}$.

Definition

A translation invariant metric is projective iff for every $x \in V$:
$\mathrm{wt}(x)=\min \left\{t \in \mathbb{N}_{\geq 0} \mid x\right.$ is an \mathbb{F}_{q}-linear combination of t vectors of weight $\left.\mathbf{1}\right\}$

Projective metrics

Let V be a vector space over finite field \mathbb{F}_{q}.
Translation invariant metric/distance function $d(\cdot, \cdot)$ on V satisfies

$$
d(x, y)=d(0, y-x)=\mathrm{wt}(y-x)
$$

for some weight function $w t(\cdot): V \rightarrow \mathbb{N}_{\geq 0}$.

Definition

A translation invariant metric is projective iff for every $x \in V$:

$$
\mathrm{wt}(x)=\min \left\{t \in \mathbb{N}_{\geq 0} \mid x \text { is an } \mathbb{F}_{q} \text {-linear combination of } t \text { vectors of weight } \mathbf{1}\right\}
$$

The set of 1-dim subspaces (projective points)

$$
\mathcal{F}=\left\{\left\langle f_{i}\right\rangle \mid f_{i} \in V, \operatorname{wt}\left(f_{i}\right)=1\right\}
$$

is called the spanning family.

Projective metrics

Other direction:

Other direction:

Let \mathcal{F} be a set of 1-dim subspaces (projective points)

$$
\mathcal{F}=\left\{\left\langle f_{1}\right\rangle,\left\langle f_{2}\right\rangle, \ldots,\left\langle f_{N}\right\rangle\right\}
$$

such that $\left\langle f_{1}, f_{2}, \ldots, f_{N}\right\rangle=V$.

Other direction:

Let \mathcal{F} be a set of 1-dim subspaces (projective points)

$$
\mathcal{F}=\left\{\left\langle f_{1}\right\rangle,\left\langle f_{2}\right\rangle, \ldots,\left\langle f_{N}\right\rangle\right\}
$$

such that $\left\langle f_{1}, f_{2}, \ldots, f_{N}\right\rangle=V$.

The projective weight function $\operatorname{wt}_{\mathcal{F}}(\cdot): V \rightarrow \mathbb{N}_{\geq 0}$ corresponding to \mathcal{F} is
$\mathrm{wt}_{\mathcal{F}}(x):=\min \left\{t \in \mathbb{N}_{\geq 0} \mid x\right.$ is in the linear span of t projective points $\left.\left\langle f_{i}\right\rangle \in \mathcal{F}\right\}$

Other direction:

Let \mathcal{F} be a set of 1-dim subspaces (projective points)

$$
\mathcal{F}=\left\{\left\langle f_{1}\right\rangle,\left\langle f_{2}\right\rangle, \ldots,\left\langle f_{N}\right\rangle\right\}
$$

such that $\left\langle f_{1}, f_{2}, \ldots, f_{N}\right\rangle=V$.

The projective weight function $\operatorname{wt}_{\mathcal{F}}(\cdot): V \rightarrow \mathbb{N}_{\geq 0}$ corresponding to \mathcal{F} is

$$
\mathrm{wt}_{\mathcal{F}}(x):=\min \left\{t \in \mathbb{N}_{\geq 0} \mid x \text { is in the linear span of } t \text { projective points }\left\langle f_{i}\right\rangle \in \mathcal{F}\right\}
$$

The projective metric $d_{\mathcal{F}}(\cdot, \cdot): V \times V \rightarrow \mathbb{N}_{\geq 0}$ corresponding to \mathcal{F} is

$$
d_{\mathcal{F}}(x, y):=\mathrm{wt}_{\mathcal{F}}(y-x) .
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Hamming metric

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of }(\text { some } 0 \text { blocks } \mid \text { rank } 1 \text { matrix } \mid \text { some } 0 \text { blocks })\}
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of }(\text { some } 0 \text { blocks } \mid \text { rank } 1 \text { matrix } \mid \text { some } 0 \text { blocks })\}
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of }(\text { some } 0 \text { blocks } \mid \text { rank } 1 \text { matrix } \mid \text { some } 0 \text { blocks })\}
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \rightarrow \mathcal{F}=\{\text { spans of matrices with } 1 \text { non-zero row or } 1 \text { non-zero column }\}
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of }(\text { some } 0 \text { blocks } \mid \text { rank } 1 \text { matrix } \mid \text { some } 0 \text { blocks })\}
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \rightarrow \mathcal{F}=\{\text { spans of matrices with } 1 \text { non-zero row or } 1 \text { non-zero column }\}
$$

Phase-rotation metric

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right)
$$

Hamming metric

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of standard basis vectors }\}
$$

Rank metric

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of rank } 1 \text { matrices }\}
$$

Sum-Rank metric

$$
\left(\begin{array}{lll|lll|lll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \mathcal{F}=\{\text { spans of }(\text { some } 0 \text { blocks } \mid \text { rank } 1 \text { matrix } \mid \text { some } 0 \text { blocks })\}
$$

Cover metric (rows and columns)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \rightarrow \mathcal{F}=\{\text { spans of matrices with } 1 \text { non-zero row or } 1 \text { non-zero column }\}
$$

Phase-rotation metric
$\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)+\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right) \rightarrow \mathcal{F}=\{$ spans of standard basis vectors or all-1 $\}$

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F});

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \mathrm{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set \mathcal{F};

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in \mathcal{F};

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in $\mathcal{F} ; \quad \operatorname{wt}_{\mathcal{F}}(v)$ is smallest rank of such a flat that contains v.

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in $\mathcal{F} ; \quad \operatorname{wt}_{\mathcal{F}}(v)$ is smallest rank of such a flat that contains v.

- Matroids:
- $\mathrm{wt}_{\mathcal{F}}(v)$ is cardinality of smallest subset of \mathcal{F} whose closure contains v.

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \mathrm{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in $\mathcal{F} ; \quad \operatorname{wt}_{\mathcal{F}}(v)$ is smallest rank of such a flat that contains v.

- Matroids:
- $\mathrm{wt}_{\mathcal{F}}(v)$ is cardinality of smallest subset of \mathcal{F} whose closure contains v.
- View \mathcal{F} as ground set of representable matroid, study dependent and independent sets.

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \mathrm{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in $\mathcal{F} ; \quad \operatorname{wt}_{\mathcal{F}}(v)$ is smallest rank of such a flat that contains v.

- Matroids:
- $\mathrm{wt}_{\mathcal{F}}(v)$ is cardinality of smallest subset of \mathcal{F} whose closure contains v.
- View \mathcal{F} as ground set of representable matroid, study dependent and independent sets.

Q: General ways to calculate $\mathrm{wt}_{\mathcal{F}}(v)$?

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in $\mathcal{F} ; \quad \operatorname{wt}_{\mathcal{F}}(v)$ is smallest rank of such a flat that contains v.

- Matroids:
- $\mathrm{wt}_{\mathcal{F}}(v)$ is cardinality of smallest subset of \mathcal{F} whose closure contains v.
- View \mathcal{F} as ground set of representable matroid, study dependent and independent sets.

Q: General ways to calculate $\mathrm{wt}_{\mathcal{F}}(v)$?
Q: For fixed t, how many v have $\mathrm{wt}_{\mathcal{F}}(v)=t$?

Equivalent notions of $\mathrm{wt}_{\mathcal{F}}(\cdot)$ in different contexts:

- Coding theory:

Certain code \mathcal{C} (depends on \mathcal{F}); $\quad \operatorname{wt}_{\mathcal{F}}(v)$ is Hamming weight of the $\operatorname{coset}(v+\mathcal{C})$.

- Graph theory:

Cayley graph of \mathbb{F}_{q}^{n} with generating set $\mathcal{F} ; \quad \mathrm{wt}_{\mathcal{F}}(v)$ is graph distance between v and 0 .

- Projective geometry:

Flats spanned by points in $\mathcal{F} ; \quad \operatorname{wt}_{\mathcal{F}}(v)$ is smallest rank of such a flat that contains v.

- Matroids:
- $\mathrm{wt}_{\mathcal{F}}(v)$ is cardinality of smallest subset of \mathcal{F} whose closure contains v.
- View \mathcal{F} as ground set of representable matroid, study dependent and independent sets.

Q: General ways to calculate $\mathrm{wt}_{\mathcal{F}}(v)$?
Q: For fixed t, how many v have $\mathrm{wt}_{\mathcal{F}}(v)=t$?

- Please let me know if you know a (partial) answer in any of these contexts! :)

What can we Do?

Singleton-type bound!

Singleton-type bound!
Let V be an n-dim vector space over \mathbb{F}_{q}. Let \mathcal{F} be a spanning family for a projective metric.

Singleton-type bound!
Let V be an n-dim vector space over \mathbb{F}_{q}. Let \mathcal{F} be a spanning family for a projective metric.

Definition

Let $t \in\{0,1,2, \ldots, n\}$. We define $\mu_{\mathcal{F}}(t)$ as the maximum cardinality of a subset $\mathcal{G} \subseteq \mathcal{F}$ satisfying

Singleton-type bound!
Let V be an n-dim vector space over \mathbb{F}_{q}. Let \mathcal{F} be a spanning family for a projective metric.

Definition

Let $t \in\{0,1,2, \ldots, n\}$. We define $\mu_{\mathcal{F}}(t)$ as the maximum cardinality of a subset $\mathcal{G} \subseteq \mathcal{F}$ satisfying

1. All $f_{i} \in \mathcal{G}$ are linear independent from each other over \mathbb{F}_{q};

Singleton-type bound!
Let V be an n-dim vector space over \mathbb{F}_{q}. Let \mathcal{F} be a spanning family for a projective metric.

Definition

Let $t \in\{0,1,2, \ldots, n\}$. We define $\mu_{\mathcal{F}}(t)$ as the maximum cardinality of a subset $\mathcal{G} \subseteq \mathcal{F}$ satisfying

1. All $f_{i} \in \mathcal{G}$ are linear independent from each other over \mathbb{F}_{q};
2. All $v \in\langle\mathcal{G}\rangle$ have $\operatorname{wt}_{\mathcal{F}}(v) \leq t$.

Singleton-type bound!
Let V be an n-dim vector space over \mathbb{F}_{q}. Let \mathcal{F} be a spanning family for a projective metric.

Definition

Let $t \in\{0,1,2, \ldots, n\}$. We define $\mu_{\mathcal{F}}(t)$ as the maximum cardinality of a subset $\mathcal{G} \subseteq \mathcal{F}$ satisfying

1. All $f_{i} \in \mathcal{G}$ are linear independent from each other over \mathbb{F}_{q};
2. All $v \in\langle\mathcal{G}\rangle$ have $\operatorname{wt}_{\mathcal{F}}(v) \leq t$.

Theorem (General Singleton-type bound)

(S. 202?) Let $\mathcal{C} \subseteq V$ be a subset and let $\left.d=\min \left\{d_{\mathcal{F}}(x, y) \mid x \neq y \in \mathcal{C}\right)\right\}$. Then

$$
|\mathcal{C}| \leq q^{n-\mu_{\mathcal{F}}(d-1)} \leq q^{n-d+1}
$$

Singleton-type bound!
Let V be an n-dim vector space over \mathbb{F}_{q}. Let \mathcal{F} be a spanning family for a projective metric.

Definition

Let $t \in\{0,1,2, \ldots, n\}$. We define $\mu_{\mathcal{F}}(t)$ as the maximum cardinality of a subset $\mathcal{G} \subseteq \mathcal{F}$ satisfying

1. All $f_{i} \in \mathcal{G}$ are linear independent from each other over \mathbb{F}_{q};
2. All $v \in\langle\mathcal{G}\rangle$ have $\operatorname{wt}_{\mathcal{F}}(v) \leq t$.

Theorem (General Singleton-type bound)

(S. 202?) Let $\mathcal{C} \subseteq V$ be a subset and let $\left.d=\min \left\{d_{\mathcal{F}}(x, y) \mid x \neq y \in \mathcal{C}\right)\right\}$. Then

$$
|\mathcal{C}| \leq q^{n-\mu_{\mathcal{F}}(d-1)} \leq q^{n-d+1}
$$

Coincides with Singleton bounds for specific projective metrics!

What can we Do?

What can we do?
Constructions/operations!

What Can We Do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \otimes \mathcal{G}}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

Examples

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

Examples

- $\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Rank }}$

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

Examples

- $\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Rank }}$
- $\mathrm{wt}_{\mathrm{H}} \otimes \mathrm{wt}_{\text {Rank }}=\mathrm{wt}_{\text {Sum-rank }}$

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

Examples

- $\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Rank }}$
$-\mathrm{wt}_{\mathrm{H}} \otimes \mathrm{wt}_{\text {Rank }}=\mathrm{wt}_{\text {Sum-rank }}$
$-\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\mathrm{H}}=\mathrm{wt}_{\text {Row }}$

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

Examples

- $\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Rank }}$
$-\mathrm{wt}_{\mathrm{H}} \otimes \mathrm{wt}_{\text {Rank }}=\mathrm{wt}_{\text {Sum-rank }}$
$-\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\mathrm{H}}=\mathrm{wt}_{\text {Row }}$
$-\mathrm{wt}_{\mathrm{H}} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Column }}$

What can we do?
Constructions/operations!
We can define

$$
\mathrm{wt}_{\mathcal{F}} \cup \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F} \cup \mathcal{G}}
$$

and

$$
\mathrm{wt}_{\mathcal{F}} \otimes \mathrm{wt}_{\mathcal{G}}:=\mathrm{wt}_{\mathcal{F}} \otimes \mathcal{G}
$$

where $\mathcal{F} \otimes \mathcal{G}:=\left\{\left\langle f_{i}\right\rangle \otimes\left\langle g_{i}\right\rangle \mid\left\langle f_{i}\right\rangle \in \mathcal{F},\left\langle g_{i}\right\rangle \in \mathcal{G}\right\}$

Example

Let $\mathcal{F}=\{$ all 1-dim subspaces of $V\}$. Then $\operatorname{wt}_{\mathcal{F}}(x)=1$ for all $x \neq 0$. This is the discrete weight $\mathrm{wt}_{\text {Dis }}$.

Examples

- $\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Rank }}$
$-\mathrm{wt}_{\mathrm{H}} \otimes \mathrm{wt}_{\text {Rank }}=\mathrm{wt}_{\text {Sum-rank }}$
- $\mathrm{wt}_{\text {Dis }} \otimes \mathrm{wt}_{\mathrm{H}}=\mathrm{wt}_{\text {Row }}$
$-\mathrm{wt}_{\mathrm{H}} \otimes \mathrm{wt}_{\text {Dis }}=\mathrm{wt}_{\text {Column }}$
- $\mathrm{wt}_{\text {Row }} \cup \mathrm{wt}_{\text {Column }}=\mathrm{wt}_{\text {Cover }}$

CURRENT RESEARCH

- Are there general methods for calculating $\mathrm{wt}_{\mathcal{F}}(v)$ for $v \in V$?
- Are there general methods for calculating $\mathrm{wt}_{\mathcal{F}}(v)$ for $v \in V$?
- Are there general methods for obtaining sphere sizes $\left|\left\{v \in V \mid \operatorname{wt}_{\mathcal{F}}(v)=t\right\}\right|$ for $t \in \mathbb{N}$?
- Are there general methods for calculating $\mathrm{wt}_{\mathcal{F}}(v)$ for $v \in V$?
- Are there general methods for obtaining sphere sizes $\left|\left\{v \in V \mid \mathrm{wt}_{\mathcal{F}}(v)=t\right\}\right|$ for $t \in \mathbb{N}$?
- Approach?: using poset lattice of projective metrics, where $\mathrm{wt}_{\mathcal{F}} \preccurlyeq \mathrm{wt}_{\mathcal{G}}$ iff $\mathcal{F} \subseteq \mathcal{G}$
- Are there general methods for calculating $\mathrm{wt}_{\mathcal{F}}(v)$ for $v \in V$?
- Are there general methods for obtaining sphere sizes $\left|\left\{v \in V \mid \mathrm{wt}_{\mathcal{F}}(v)=t\right\}\right|$ for $t \in \mathbb{N}$?
- Approach?: using poset lattice of projective metrics, where $\mathrm{wt}_{\mathcal{F}} \preccurlyeq \mathrm{wt}_{\mathcal{G}}$ iff $\mathcal{F} \subseteq \mathcal{G}$

- Are there general methods for calculating $\mathrm{wt}_{\mathcal{F}}(v)$ for $v \in V$?
- Are there general methods for obtaining sphere sizes $\left|\left\{v \in V \mid \mathrm{wt}_{\mathcal{F}}(v)=t\right\}\right|$ for $t \in \mathbb{N}$?
- Approach?: using poset lattice of projective metrics, where $\mathrm{wt}_{\mathcal{F}} \preccurlyeq \mathrm{wt}_{\mathcal{G}}$ iff $\mathcal{F} \subseteq \mathcal{G}$

Ideas on how this might work are very welcome! :)

- Are there general methods for calculating $\mathrm{wt}_{\mathcal{F}}(v)$ for $v \in V$?
- Are there general methods for obtaining sphere sizes $\left|\left\{v \in V \mid \mathrm{wt}_{\mathcal{F}}(v)=t\right\}\right|$ for $t \in \mathbb{N}$?
- Approach?: using poset lattice of projective metrics, where $\mathrm{wt}_{\mathcal{F}} \preccurlyeq \mathrm{wt}_{\mathcal{G}}$ iff $\mathcal{F} \subseteq \mathcal{G}$

Ideas on how this might work are very welcome! :)
Let me know if you know more projective metrics!

