Polar Geometry and (Belgian) Friends

Valentino Smaldore

Università degli Studi di Padova Finite Geometry \& Friends
joint works with Sam Adriaensen, Michela Ceria, Jan De Beule, Jonathan Mannaert, Francesco Pavese and Federico Romaniello

September 20, 2023

Belgian friends

Belgian friends

Belgian friends

(1) Finite classical polar spaces
(2) Partial ovoids and m-ovoids
(3) Graph $N U\left(3, q^{2}\right)$ and block graphs

Finite classical polar spaces

Definitions

Let \mathcal{P} be a finite classical polar space. Hence \mathcal{P} is a member of one of the following classes: a symplectic space $W(2 n+1, q)$, a parabolic quadric $Q(2 n, q)$, an hyperbolic quadric $Q^{+}(2 n+1, q)$, an elliptic quadric $Q^{-}(2 n+1, q)$ or an Hermitian variety $H(n, q)$ (q a square). A projective subspace of maximal dimension contained in \mathcal{P} is called a generator of \mathcal{P}. The vector dimension of a generator of \mathcal{P} is called the rank of \mathcal{P}. $\mathcal{P}_{d, e}$ will denote a polar space of rank $d \geq 2$ as follows:

$\mathcal{P}_{d, e}$	$Q^{+}(2 d-1, q)$	$H(2 d-1, q)$	$W(2 d-1, q)$	$Q(2 d, q)$	$H(2 d, q)$	$Q^{-}(2 d+1, q)$
e	0	$1 / 2$	1	1	$3 / 2$	2

$\mathcal{M}_{\mathcal{P}_{d, e}}$ will denote the set of generators of the polar space $\mathcal{P}_{d, e}$, while $\mathcal{M}_{\mathcal{P}_{d-1, e}}$ will denote the set of generators passing through a fixed point.

Finite classical polar spaces

Known facts

$$
\text { Let } \theta_{d}:=\frac{q^{d+1}-1}{q-1}=1+q+\ldots+q^{d} \text {. }
$$

Proposition

(1) $\mathcal{P}_{d, e}$ has $\left|\mathcal{P}_{d, e}\right|=\theta_{d}\left(q^{d+e-1}+1\right)$ points;
(2) the number of generators is $\left|\mathcal{M}_{\mathcal{P}_{d, e}}\right|=\prod_{i=1}^{d}\left(q^{d+e-i}+1\right)$;
(3) each generator contains θ_{d} points;
(9) through each point there pass $\left|\mathcal{M}_{\mathcal{P}_{d-1, e}}\right|=\prod_{i=2}^{d}\left(q^{d+e-i}+1\right)$ generators.

Finite classical polar spaces

Research problems

Nowadays, some research problems related to finite classical polar space are:

- existence of spreads and ovoids;
- existence of regular systems and m-ovoids;
- upper or lower bounds on partial spreads and partial ovoids.

Moreover, polar spaces are in relation with combinatorial objects as regular graphs, block designs and association schemes.

Partial ovoids and m-ovoids

Definition

(1) An ovoid \mathcal{O} of a polar space $\mathcal{P}_{d, e}$ is a set of points of $\mathcal{P}_{d, e}$ such that every generator contains exactly one point of \mathcal{O}.
(2) A partial ovoid \mathcal{O} of a polar space $\mathcal{P}_{d, e}$ is a set of points of $\mathcal{P}_{d, e}$ such that every generator contains at most one point of \mathcal{O}. A partial ovoid is said to be maximal if it is maximal with respect to set-theoretic inclusion.
(3) An m-ovoid \mathcal{O} of a polar space $\mathcal{P}_{d, e}$ is a set of points of $\mathcal{P}_{d, e}$ such that every generator contains exactly m point of \mathcal{O}, $0 \leq m \leq \theta_{d}$.

Partial ovoids and m-ovoids

Partial ovoids of $W(3, q)$, q odd

	Parital ovoid in $W(3, q)$	Partial spread in $Q(4, q)$
Size q+1	$q+1$ points on a	Regulus of $q+1$
	non-isotropic line	lines in $Q^{+}(3, q)$

Theorem (G. Tallini, 1988)

If q even, $W(3, q)$ has an ovoid of size $q^{2}+1$.
If q odd, $W(3, q)$ has no ovoids. Moreover, a maximal partial ovoid has size at most $q^{2}-q+1$.

Partial ovoids and m-ovoids

Partial ovoids of $W(3, q)$, q odd
$\mathcal{O}\left(\mathcal{P}_{d, e}\right):=$ size of the largest maximal partial ovoid of $\mathcal{P}_{d, e}$
Theorem (M. Ceria, J. De Beule, F. Pavese, V.S., 2022)
If $q=p^{2 n}, p \neq 2,3$,

$$
\frac{q^{\frac{3}{2}}+3 q-q^{\frac{1}{2}}+3}{3}<\mathcal{O}(W(3, q)) \leq q^{2}-q+1
$$

Partial ovoids and m-ovoids The new construction

(1) $\mathcal{C}=\left\{\left(1,-3 t, t^{2}, t^{3}\right) \mid t \in F_{q}\right\} \cup\{(0,0,0,1)\}$ twisted cubic
(2) $G \simeq P G L(2, q)$ group of projectivities fixing \mathcal{C}
(3) G stabilizes $W(3, q)$ given by $x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}-x_{4} y_{1}$
(4) $K \leq G, K \simeq \operatorname{PGL}(2, \sqrt{q})$, fixes a twisted cubic $\overline{\mathcal{C}} \subset \mathcal{C}$ of a $P G(3, \sqrt{q}) \subset P G(3, q)$.
(5) ℓ line of $P G(3, q),|\ell \cap P G(3, \sqrt{q})|=\sqrt{q}+1$
(6) $|\ell \cap(\mathcal{C} \backslash \overline{\mathcal{C}})|=2$, if $q \equiv-1(\bmod 3)$,
$|\ell \cap \overline{\mathcal{C}}|=2$, if $q \equiv 1(\bmod 3)$

Partial ovoids and m-ovoids
 The new construction

Proposition

$\exists P \in \ell \backslash P G(3, \sqrt{q})$, such that:

- P^{K} is a partial ovoid of $W(3, q)$
- P^{K} has size $\frac{q^{\frac{3}{2}}-q^{\frac{1}{2}}}{3}$
- $P^{K} \cup \mathcal{C}$ is a partial ovoid of $W(3, q)$ of size $\frac{q^{\frac{3}{2}}+3 q-q^{\frac{1}{2}}+3}{3}$
$P^{K} \cup \mathcal{C}$ is not maximal!

Partial ovoids and m-ovoids

$$
\mathcal{P}_{d, e}^{\prime} \in\left\{Q^{-}(2 d+1, q), W(2 d-1, q), H\left(2 d, q^{2}\right)\right\}
$$

Theorem (J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007)

Consider an m-ovoid \mathcal{O} in the polar space $\mathcal{P}_{d, e}^{\prime}$. Then $m \geq b$, with b given in the table below.

$\mathcal{P}_{d, e}^{\prime}$	b
$Q^{-}(2 d+1, q)$	$\frac{-3+\sqrt{9+4 q^{d+1}}}{2(q-1)}$
$W(2 d-1, q)$	$\frac{-3+\sqrt{9+4 q^{d}}}{2(q-1)}$
$H\left(2 d, q^{2}\right)$	$\frac{-3+\sqrt{9+4 q^{2 d+1}}}{2\left(q^{2}-1\right)}$

Partial ovoids and m-ovoids

Characterstic function

Lemma

Suppose that \mathcal{O} is a set of points in $\mathcal{P}_{d, e}^{\prime}$ with ambient projective space $P G(n, q)$. Then \mathcal{O} is an m-ovoid if and only if for every point $p \in P G(n, q)$

$$
\left|p^{\perp} \cap \mathcal{O}\right|=\left\{\begin{aligned}
(m-1)\left(q^{d+e-2}+1\right)+1, & p \in \mathcal{O} \\
m\left(q^{d+e-2}+1\right), & p \in P G(n, q) \backslash \mathcal{O}
\end{aligned}\right.
$$

Let \mathcal{O} be an m-ovoid with characteristic vector χ, and let π be any subspace of the ambient projective space. The weight of π is then defined as $\mu(\pi)=\sum_{P \in \pi} \chi_{P}$, i.e. the number of points of \mathcal{O} contained in π.

$$
\mu\left(p^{\perp}\right)+q^{d+e-2} \mu(p)=m\left(q^{d+e-2}+1\right)
$$

Partial ovoids and m-ovoids

Weighted m-ovoids

Definition

Consider $\mu: \mathcal{P}_{d, e} \rightarrow \mathbb{N}$ such that for every subspace π of $\operatorname{PG}(n, q)$ it holds that $\mu(\pi)=\sum_{p \in \pi} \mu(p)$. Then we call μ a weighted m-ovoid of $\mathcal{P}_{d, e}$ if for every point p it holds that

$$
\mu\left(p^{\perp}\right)+q^{d+e-2} \mu(p)=m\left(q^{d+e-2}+1\right) .
$$

Lemma

Suppose that μ is a weighted m-ovoid in $\mathcal{P}_{d, e}^{\prime}$, then for every j-dimensional space π in $P G(n, q)$,

$$
\mu\left(\pi^{\perp}\right)+q^{d+e-j-2} \mu(\pi)=m\left(q^{d+e-j-2}+1\right)
$$

Partial ovoids and m-ovoids

Technical lemmas

Lemma

Suppose that μ is a weighted m-ovoid in $\mathcal{P}_{d, e}^{\prime}$ and π is a j-subspace, $0 \leq j \leq d-1$. If $\mu\left(\pi^{\perp} \backslash \pi\right) \neq 0$, then

$$
m\left(q^{d+e-j-3}+1\right)\left(m\left(q^{d+e-1}+1\right)-\mu(\pi)\right)+q^{d+e-2} \sum_{p \in \pi \perp \backslash \pi} \mu(p)^{2}=
$$

$$
\begin{equation*}
=m\left(q^{d+e-2}+1\right)(m-\mu(\pi))\left(q^{d+e-j-2}+1\right)+q^{d+e-j-3} \sum_{p \in \mathcal{P}_{d, e}^{\prime} \backslash \pi} \mu(p) \mu(\langle p, \pi\rangle)+\sum_{s \notin \pi^{\perp}} \mu\left(s^{\perp} \cap \pi\right) . \tag{1}
\end{equation*}
$$

Partial ovoids and m-ovoids

Technical lemmas

Corollary

Suppose that μ is a weighted m-ovoid in $\mathcal{P}_{d, e}^{\prime}$ and p_{0} is a point such that $\mu\left(p_{0}\right)<m$. Then

$$
\begin{aligned}
& m\left(q^{d+e-3}+1\right)\left(m\left(q^{d+e-1}+1\right)-\mu\left(p_{0}\right)\right)+q^{d+e-2} \sum_{p \in p_{0}^{\perp} \backslash\left\{p_{0}\right\}} \mu(p)^{2}= \\
& =m\left(q^{d+e-2}+1\right)^{2}\left(m-\mu\left(p_{0}\right)\right)+q^{d+e-3} \sum_{p \in \mathcal{P}_{d, e}^{\prime} \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right)
\end{aligned}
$$

Lemma

Let \mathcal{O} be a non-trivial m-ovoid of $\mathcal{P}_{d, e}^{\prime}$, with $m \geq 2$. then

$$
(q-1)^{2} m^{2}+3(q-1) m-q^{d+e-1}-q-2 \geq 0
$$

Partial ovoids and m-ovoids

Improvement for Theorem 17

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Consider a non-trivial m-ovoid \mathcal{O} in $\mathcal{P}_{d, e}^{\prime}, d \geq 2, d>2$ for $W(2 d-1, q)$. Then $m \geq b$, with b given in the table below.

$\mathcal{P}_{d, e}^{\prime}$	b
$Q^{-}(2 d+1, q)$	$\frac{-3+\sqrt{9+4\left(q^{d+1}+q-2\right)}}{2(q-1)}$
$W(2 d-1, q)$	$\frac{-3+\sqrt{9+4\left(q^{d}+q-2\right)}}{2(q-1)}$
$H\left(2 d, q^{2}\right)$	$\frac{-3+\sqrt{9+4\left(q^{2 d+1}+q^{2}-2\right)}}{2\left(q^{2}-1\right)}$

Partial ovoids and m－ovoids

Main Theorem

Theorem

Assume that \mathcal{O} is an m－ovoid in $\mathcal{P}_{d, e}^{\prime}$ and π is $(d-2)$－subspace such that $\mu\left(\pi^{\perp} \backslash\{\pi\}\right) \neq 0$ ，with $\mu(\pi)=\mu$ then

$$
\begin{gathered}
m^{2}\left(q^{d+e-1}-q^{d+e-2}-q^{2 e-1}-q^{e}\right)+m\left[q^{e}\left(\mu\left(q^{d-2}+2 q^{e-1}+q\right)+q^{d-2}+q^{e-1}\right)\right] \\
-\mu\left(q^{d+2 e-2}+q^{d+e-2}+(1+\mu)\left(q^{2 e-1}+q^{e-1}\right)+q^{d+2 e-1} \frac{q^{d-2}-1}{q-1}\right) \geq 0
\end{gathered}
$$

Partial ovoids and m-ovoids

Main Theorem

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Let $q>2$ and $d \geq 3$. Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}_{d, e}^{\prime}$, with $d \geq 4$ OR $e \in\left\{1, \frac{3}{2}\right\}$ and $(d, q, e) \neq(3,3,1)$. Then it holds that
$m \geq \frac{-d\left(1+\frac{2}{q^{d-e-1}}\right)+\sqrt{d^{2}\left(1+\frac{2}{q^{d-1}}\right)^{2}+4(q-2)(d-1)\left(q^{e+1} \frac{q^{d-2}-1}{q-1}+q^{e}+1\right)}}{2(q-1)}$.
This bound asymptotically converges to

$$
m \geq \frac{-d+\sqrt{d^{2}+4(d-1)(q-2) q^{d+e-2}}}{2(q-1)}
$$

Partial ovoids and m-ovoids

Theorem (J. De Beule, J. Mannaert, V. S., 2023)
Suppose that \mathcal{O} is an m-ovoid in $Q^{-}(7, q)$, for $q>2$, then

$$
m \geq \frac{-9+\sqrt{9\left(1+\frac{2}{q^{2}}\right)^{2}+8\left(q-\frac{7}{3}\right)\left(q^{3}+q^{2}+1\right)}}{2(q-1)}
$$

Partial ovoids and m-ovoids

Summary tables

Bounds for m-ovoids of $W(2 d-1,3)$

d	Bound from Theorem 22	Bound from Theorem 24
4	$m \geq 4$	$m \geq 5$
5	$m \geq 8$	$m \geq 10$
6	$m \geq 13$	$m \geq 20$
7	$m \geq 23$	$m \geq 39$
100	$m \geq 3,59 \cdot 10^{23}$	$m \geq 2,53 \cdot 10^{24}$

Partial ovoids and m-ovoids

Summary tables

Bounds for m-ovoids of $Q^{-}(2 d+1,3)$

d	Bound from Theorem 22	Bound from Theorem 24
4	$m \geq 8$	$m \geq 8$
5	$m \geq 13$	$m \geq 18$
6	$m \geq 23$	$m \geq 36$
7	$m \geq 40$	$m \geq 69$
100	$m \geq 6,22 \cdot 10^{23}$	$m \geq 4,37 \cdot 10^{24}$

Partial ovoids and m-ovoids

Summary tables

Bounds for m-ovoids of $H(2 d, 9)$

d	Bound from Theorem 22	Bound from Theorem 24
3	$m \geq 6$	$m \geq 8$
4	$m \geq 18$	$m \geq 29$
5	$m \geq 53$	$m \geq 99$
6	$m \geq 158$	$m \geq 330$
7	$m \geq 474$	$m \geq 1085$
100	$m \geq 1,12 \cdot 10^{47}$	$m \geq 1,04 \cdot 10^{48}$

Partial ovoids and m-ovoids

Summary tables

Bounds for m-ovoids of $Q^{-}(7, q)$

q	Bound from Theorem 22	Bound from Theorem 25
3	$m \geq 4$	$m \geq 2$
4	$m \geq 5$	$m \geq 5$
5	$m \geq 6$	$m \geq 6$
7	$m \geq 8$	$m \geq 10$
8	$m \geq 9$	$m \geq 11$
$3^{5}=243$	$m \geq 244$	$m \geq 345$

Graph $N U\left(3, q^{2}\right)$ and block graphs

Strongly regular graphs

$$
G:=(V(G), E(G))
$$

$V=V(G)$ is a non-empty set, of element called vertices
$E=E(G)$ is the set of edges, together with an incidence function $\phi: E \rightarrow V \times V$. If $\phi(e)=\{u, v\}$ we say that e joins u and v, and those are called adjacent vertices or neighbours.

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices, each vertex lies on k edges, any two adjacent vertices have λ common neighbours and any two non-adjacent vertices have μ common neighbours.

Graph $N U\left(3, q^{2}\right)$ and block graphs

Let consider the projective space $P G\left(n, q^{2}\right)$, together with a non-degenerate Hermitian variety $H=H\left(n, q^{2}\right)$.
Let $n \geq 2$ and $\varepsilon=(-1)^{n+1}$.

Definition

$N U\left(n+1, q^{2}\right)$ is the graph whose vertex set is $P G\left(n, q^{2}\right) \backslash H$, and two vertices are adjacent if they lie on the same tangent line.

Graph $N U\left(3, q^{2}\right)$ and block graphs

 Parameters of $\operatorname{NU}\left(3, q^{2}\right)$
Proposition

$N U\left(n+1, q^{2}\right)$ is a strongly regular graph with parameters:

$$
\begin{gathered}
v=\frac{q^{n}\left(q^{n+1}-\varepsilon\right)}{q+1} \\
k=\left(q^{n}+\varepsilon\right)\left(q^{n-1}-\varepsilon\right) \\
\lambda=q^{2 n-3}(q+1)-\varepsilon q^{n-1}(q-1)-2 \\
\mu=q^{n-2}(q+1)\left(q^{n-1}-\varepsilon\right) .
\end{gathered}
$$

Corollary
$N U\left(3, q^{2}\right)$ has parameters

$$
\left(q^{4}-q^{3}+q^{2},\left(q^{2}-1\right)(q+1), 2\left(q^{2}-1\right),(q+1)^{2}\right) .
$$

Graph $\operatorname{NU}\left(3, q^{2}\right)$ and block graphs

Theorem (F. Romaniello, V. S., 2022)

Let $G_{2}=\operatorname{Aut}\left(\operatorname{NU}\left(3, q^{2}\right)\right)$ be the automorphism group of the graph $N U\left(3, q^{2}\right)$:
(1) if $q \neq 2, G_{2} \cong P \Gamma U(3, q)$, the semilinear collineation group stabilizing the Hermitian curve $H\left(2, q^{2}\right)$;
(2) if $q=2, G_{2} \cong S_{3} \backslash S_{4} \cong S_{3}^{4} \rtimes S_{4}$.

Graph $N U\left(3, q^{2}\right)$ and block graphs

 The dual block graph
Definition

An unital \mathcal{U} is a $2-\left(a^{3}+1, a+1,1\right)$ block design, $a \geq 3$, i.e. a set of $a^{3}+1$ points arranged into blocks of size $a+1$, such that each pair of distinct points is contained in exactly one block.

Definition

Let \mathcal{U} be an unital. The block graph of \mathcal{U} is the graph whose vertices are the blocks of the design, and two distinct blocks define adjacent vertices if they share a point.

Graph $N U\left(3, q^{2}\right)$ and block graphs

Maximal cliques of block graphs
Work in progress with S. Adriaensen, J. De Beule, F. Romaniello.
Conjecture
$\operatorname{Aut}(\mathcal{U}) \cong \operatorname{Aut}\left(\Gamma_{\mathcal{U}}\right)$.
D. Mezőfi, G. P. Nagy, Algorithms and libraries of abstract unitals and their embeddings, Version 0.5 (2018), (GAP package), https://github.com/nagygp/UnitalSZ
(1) Classical unital: $\operatorname{Aut}\left(H\left(2, q^{2}\right)\right) \cong P \Gamma U(3, q)$;
(2) Ree unital: $\operatorname{Aut}(\operatorname{Ree} U(3)) \cong \operatorname{Ree}(3) \cong P \Gamma L(2,8)$;
(3) Buekenhout-Metz orthogonal unital, $q=3$:
$\operatorname{Aut}(B M(3)) \cong\left(C_{3} \times C_{3} \times C_{3}\right) \rtimes Q_{8} ;$
(9) Buekenhout-Tits unital, $q=3$:
$\operatorname{Aut}(B T(3)) \cong\left(\left(C_{4} \times C_{4}\right) \rtimes C_{8}\right) \rtimes C_{6}$;
(5) Bagchi-Bagchi unital, $n=6$:
$\operatorname{Aut}(B B(6)) \cong C_{7} \rtimes\left(C_{31} \rtimes C_{30}\right)$.

Graph $N U\left(3, q^{2}\right)$ and block graphs

Maximal cliques of block graphs and block graphs

Theorem（Hoffman＇s clique bound）

The size of a maximal clique of a k－regular graph \mathcal{G} is bounded by

$$
\omega(\mathcal{G}) \leq 1+\frac{k}{|\lambda|},
$$

where λ is the smallest eigenvalue．

Corollary

The size of a maximal clique of $\mathcal{G}=N U\left(3, q^{2}\right)$ is bounded by

$$
\omega(\mathcal{G}) \leq 1+\frac{\left(q^{2}-1\right)(q+1)}{q+1}=q^{2} .
$$

Graph $N U\left(3, q^{2}\right)$ and block graphs

Theorem (M. De Boeck, 2015)

Let \mathcal{U} be a unital of order q and let S be a maximal Erdős-Ko-Rado set on \mathcal{U}.
(1) If $q \geq 5$ then either $|S|=q^{2}$ and S is a point-pencil, or else $|S| \leq q^{2}-q+q^{\frac{2}{3}}-\frac{2}{3} q^{\frac{1}{3}}+1$.
(2) If $q=4$ then either $|S|=16=q^{2}$ and S is a point-pencil, or else $|S| \leq 13=q^{2}-q+1$.
(3) If $q=3$ then either $|S|=9=q^{2}$ and S is a point-pencil, or else $|S| \leq 8$.

Corollary

$\operatorname{Aut}(\mathcal{U}) \cong \operatorname{Aut}\left(\Gamma_{\mathcal{U}}\right)$.

