Polar Geometry and (Belgian) Friends

Valentino Smaldore

Università degli Studi di Padova Finite Geometry & Friends

joint works with Sam Adriaensen, Michela Ceria, Jan De Beule, Jonathan Mannaert, Francesco Pavese and Federico Romaniello

September 20, 2023

Belgian friends

Belgian friends

Belgian friends

Finite classical polar spaces Definitions

Let \mathcal{P} be a finite classical polar space. Hence \mathcal{P} is a member of one of the following classes: a symplectic space W(2n+1,q), a parabolic quadric Q(2n,q), an hyperbolic quadric $Q^+(2n+1,q)$, an elliptic quadric $Q^-(2n+1,q)$ or an Hermitian variety H(n,q)(q a square). A projective subspace of maximal dimension contained in \mathcal{P} is called a *generator* of \mathcal{P} . The vector dimension of a generator of \mathcal{P} is called the *rank* of \mathcal{P} . $\mathcal{P}_{d,e}$ will denote a polar space of rank $d \geq 2$ as follows:

 $\mathcal{M}_{\mathcal{P}_{d,e}}$ will denote the set of generators of the polar space $\mathcal{P}_{d,e}$, while $\mathcal{M}_{\mathcal{P}_{d-1,e}}$ will denote the set of generators passing through a fixed point.

Finite classical polar spaces Known facts

Let
$$eta_d := rac{q^{d+1}-1}{q-1} = 1 + q + \ldots + q^d$$
.

Proposition

•
$$\mathcal{P}_{d,e}$$
 has $|\mathcal{P}_{d,e}| = \theta_d(q^{d+e-1}+1)$ points;

- 3 the number of generators is $|\mathcal{M}_{\mathcal{P}_{d,e}}| = \prod_{i=1}^{d} (q^{d+e-i}+1);$
- **(3)** each generator contains θ_d points;
- through each point there pass $|\mathcal{M}_{\mathcal{P}_{d-1,e}}| = \prod_{i=2}^{d} (q^{d+e-i}+1)$ generators.

Finite classical polar spaces Research problems

Nowadays, some research problems related to finite classical polar space are:

- existence of spreads and ovoids;
- existence of regular systems and *m*-ovoids;
- upper or lower bounds on partial spreads and partial ovoids.

Moreover, polar spaces are in relation with combinatorial objects as regular graphs, block designs and association schemes.

Partial ovoids and *m*-ovoids

Definition

- An ovoid O of a polar space P_{d,e} is a set of points of P_{d,e} such that every generator contains exactly one point of O.
- A partial ovoid O of a polar space P_{d,e} is a set of points of P_{d,e} such that every generator contains at most one point of O. A partial ovoid is said to be maximal if it is maximal with respect to set-theoretic inclusion.
- An m-ovoid O of a polar space P_{d,e} is a set of points of P_{d,e} such that every generator contains exactly m point of O,
 0 ≤ m ≤ θ_d.

Partial ovoids and *m*-ovoids Partial ovoids of W(3, q), q odd

	Parital ovoid in $W(3, q)$	Partial spread in $Q(4, q)$
Size $q + 1$	q+1 points on a	Regulus of $q+1$
	non-isotropic line	lines in $Q^+(3,q)$

Theorem (G. Tallini, 1988)

If q even, W(3, q) has an ovoid of size $q^2 + 1$. If q odd, W(3, q) has no ovoids. Moreover, a maximal partial ovoid has size at most $q^2 - q + 1$.

Partial ovoids and *m*-ovoids Partial ovoids of W(3, q), q odd

$$\mathcal{O}(\mathcal{P}_{d,e}) :=$$
 size of the largest maximal partial ovoid of $\mathcal{P}_{d,e}$

Theorem (M. Ceria, J. De Beule, F. Pavese, V.S., 2022) If $q = p^{2n}$, $p \neq 2, 3$, $\frac{q^{\frac{3}{2}} + 3q - q^{\frac{1}{2}} + 3}{3} < \mathcal{O}(W(3, q)) \le q^2 - q + 1.$

▲ロト▲団ト▲臣ト▲臣ト 臣 のへで

Partial ovoids and *m*-ovoids The new construction

- **0** $C = \{(1, -3t, t^2, t^3) | t \in F_q\} \cup \{(0, 0, 0, 1)\}$ twisted cubic
- **2** $G \simeq PGL(2, q)$ group of projectivities fixing C
- **3** G stabilizes W(3, q) given by $x_1y_4 + x_2y_3 x_3y_2 x_4y_1$
- $K \leq G, K \simeq PGL(2, \sqrt{q})$, fixes a twisted cubic $\overline{C} \subset C$ of a $PG(3, \sqrt{q}) \subset PG(3, q)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

• ℓ line of PG(3,q), $|\ell \cap PG(3,\sqrt{q})| = \sqrt{q} + 1$

•
$$|\ell \cap (\mathcal{C} \setminus \overline{\mathcal{C}})| = 2$$
, if $q \equiv -1 \pmod{3}$,
 $|\ell \cap \overline{\mathcal{C}}| = 2$, if $q \equiv 1 \pmod{3}$

Partial ovoids and *m*-ovoids The new construction

Proposition

 $\exists P \in \ell \setminus PG(3, \sqrt{q}), \text{ such that:}$ • P^{K} is a partial ovoid of W(3, q)• P^{K} has size $\frac{q^{\frac{3}{2}} - q^{\frac{1}{2}}}{3}$ • $P^{K} \cup C$ is a partial ovoid of W(3, q) of size $\frac{q^{\frac{3}{2}} + 3q - q^{\frac{1}{2}} + 3}{3}$

 $P^{K} \cup C$ is not maximal!

Partial ovoids and *m*-ovoids Non-existance results for *m*-ovoids

$$\mathcal{P}'_{d,e} \in \{Q^-(2d+1,q), W(2d-1,q), H(2d,q^2)\}$$

Theorem (J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007)

Consider an m-ovoid O in the polar space $\mathcal{P}'_{d,e}$. Then $m \geq b$, with b given in the table below.

$\mathcal{P}_{d,e}'$	b
$Q^{-}(2d+1,q)$	$\frac{-3+\sqrt{9+4q^{d+1}}}{2(q-1)}$
W(2d-1,q)	$\frac{-3+\sqrt{9+4q^d}}{2(q-1)}$
$H(2d,q^2)$	$\frac{-3+\sqrt{9+4q^{2d+1}}}{2(q^2-1)}$

Partial ovoids and *m*-ovoids Characterstic function

Lemma

Suppose that \mathcal{O} is a set of points in $\mathcal{P}'_{d,e}$ with ambient projective space PG(n,q). Then \mathcal{O} is an m-ovoid if and only if for every point $p \in PG(n,q)$

$$|p^{\perp} \cap \mathcal{O}| = egin{cases} (m-1)(q^{d+e-2}+1)+1, & p \in \mathcal{O}, \ m(q^{d+e-2}+1), & p \in PG(n,q) \setminus \mathcal{O}. \end{cases}$$

Let \mathcal{O} be an *m*-ovoid with characteristic vector χ , and let π be any subspace of the ambient projective space. The *weight* of π is then defined as $\mu(\pi) = \sum_{P \in \pi} \chi_P$, i.e. the number of points of \mathcal{O} contained in π .

$$\mu(p^{\perp}) + q^{d+e-2}\mu(p) = m(q^{d+e-2}+1)$$

Partial ovoids and *m*-ovoids Weighted *m*-ovoids

Definition

Consider $\mu : \mathcal{P}_{d,e} \to \mathbb{N}$ such that for every subspace π of PG(n,q) it holds that $\mu(\pi) = \sum_{p \in \pi} \mu(p)$. Then we call μ a weighted *m*-ovoid of $\mathcal{P}_{d,e}$ if for every point *p* it holds that

$$\mu(p^{\perp}) + q^{d+e-2}\mu(p) = m(q^{d+e-2}+1).$$

Lemma

Suppose that μ is a weighted m-ovoid in $\mathcal{P}'_{d,e}$, then for every *j*-dimensional space π in PG(n,q),

$$\mu(\pi^{\perp}) + q^{d+e-j-2}\mu(\pi) = m(q^{d+e-j-2}+1).$$

Partial ovoids and *m*-ovoids Technical lemmas

Lemma

Suppose that μ is a weighted m-ovoid in $\mathcal{P}'_{d,e}$ and π is a j-subspace, $0 \leq j \leq d-1$. If $\mu(\pi^{\perp} \setminus \pi) \neq 0$, then

$$m(q^{d+e-j-3}+1)(m(q^{d+e-1}+1)-\mu(\pi))+q^{d+e-2}\sum_{\substack{p\in\pi^{\perp}\setminus\pi\\p\in\mathcal{P}_{d,e}^{\prime}\setminus\pi}}\mu(p)^{2}=$$

$$=m(q^{d+e-2}+1)(m-\mu(\pi))(q^{d+e-j-2}+1)+q^{d+e-j-3}\sum_{\substack{p\in\mathcal{P}_{d,e}^{\prime}\setminus\pi\\p\in\mathcal{P}_{d,e}^{\prime}\setminus\pi}}\mu(p)\mu(\langle p,\pi\rangle)+\sum_{s\not\in\pi^{\perp}}\mu(s^{\perp}\cap\pi).$$
(1)

Partial ovoids and *m*-ovoids Technical lemmas

Corollary

Suppose that μ is a weighted m-ovoid in $\mathcal{P}'_{d,e}$ and p_0 is a point such that $\mu(p_0) < m$. Then

$$egin{aligned} m(q^{d+e-3}+1)(m(q^{d+e-1}+1)-\mu(p_0))+q^{d+e-2}&\sum_{p\in p_0^{\perp}ackslash \{p_0\}}\mu(p)^2=\ &=m(q^{d+e-2}+1)^2(m-\mu(p_0))+q^{d+e-3}&\sum_{p\in \mathcal{P}_{d,e}^{\prime}ackslash \{p_0\}}\mu(p)\mu(\langle p_0,p
angle) \end{aligned}$$

Lemma

Let
$$\mathcal{O}$$
 be a non-trivial m-ovoid of $\mathcal{P}'_{d,e}$, with $m \geq 2$. then

$$(q-1)^2m^2 + 3(q-1)m - q^{d+e-1} - q - 2 \ge 0$$

Partial ovoids and *m*-ovoids Improvement for Theorem 17

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Consider a non-trivial m-ovoid \mathcal{O} in $\mathcal{P}'_{d,e}$, $d \ge 2$, d > 2 for W(2d-1,q). Then $m \ge b$, with b given in the table below.

$\mathcal{P}_{d,e}'$	Ь
$Q^-(2d+1,q)$	$\frac{-3+\sqrt{9+4(q^{d+1}+q-2)}}{2(q-1)}$
W(2d-1,q)	$\frac{-3+\sqrt{9+4(q^d+q-2)}}{2(q-1)}$
$H(2d,q^2)$	$\frac{-3+\sqrt{9+4(q^{2d+1}+q^2-2)}}{2(q^2-1)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Partial ovoids and *m*-ovoids Main Theorem

Theorem

Assume that \mathcal{O} is an m-ovoid in $\mathcal{P}'_{d,e}$ and π is (d-2)-subspace such that $\mu(\pi^{\perp} \setminus {\pi}) \neq 0$, with $\mu(\pi) = \mu$ then $m^{2}(q^{d+e-1}-q^{d+e-2}-q^{2e-1}-q^{e})+m\left[q^{e}\left(\mu(q^{d-2}+2q^{e-1}+q)+q^{d-2}+q^{e-1}\right)\right]$ $-\mu\left(q^{d+2e-2}+q^{d+e-2}+(1+\mu)(q^{2e-1}+q^{e-1})+q^{d+2e-1}\frac{q^{d-2}-1}{q-1}\right) \geq 0$

▲ロト ▲部 ▶ ▲ 語 ▶ ▲ 語 ▶ → 語 → のへで

Partial ovoids and *m*-ovoids Main Theorem

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Let q > 2 and $d \ge 3$. Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}'_{d,e}$, with $d \ge 4$ **OR** $e \in \{1, \frac{3}{2}\}$ and $(d, q, e) \ne (3, 3, 1)$. Then it holds that

$$m \geq \frac{-d(1+\frac{2}{q^{d-e-1}}) + \sqrt{d^2(1+\frac{2}{q^{d-1}})^2 + 4(q-2)(d-1)(q^{e+1}\frac{q^{d-2}-1}{q-1} + q^e + 1)}}{2(q-1)}$$

This bound asymptotically converges to

$$m \geq rac{-d + \sqrt{d^2 + 4(d-1)(q-2)q^{d+e-2}}}{2(q-1)}.$$

(ロ・・部・・ドット ほう うくの

Partial ovoids and *m*-ovoids Main Theorem

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Suppose that \mathcal{O} is an m-ovoid in $Q^{-}(7, q)$, for q > 2, then

$$m \geq rac{-9 + \sqrt{9(1 + rac{2}{q^2})^2 + 8\Big(q - rac{7}{3}\Big)(q^3 + q^2 + 1)}}{2(q-1)}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

Partial ovoids and *m*-ovoids Summary tables

Bounds for *m*-ovoids of W(2d - 1, 3)

d	Bound from Theorem 22	Bound from Theorem 24
4	$m \ge 4$	$m \ge 5$
5	$m \ge 8$	$m \ge 10$
6	$m \ge 13$	$m \ge 20$
7	$m \ge 23$	$m \ge 39$
100	$m \geq 3,59 \cdot 10^{23}$	$m \geq 2,53 \cdot 10^{24}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

臣

Partial ovoids and *m*-ovoids Summary tables

Bounds for *m*-ovoids of $Q^{-}(2d + 1, 3)$

d	Bound from Theorem 22	Bound from Theorem 24
4	$m \ge 8$	$m \ge 8$
5	$m \ge 13$	$m \ge 18$
6	$m \ge 23$	$m \ge 36$
7	$m \ge 40$	$m \ge 69$
100	$m \geq 6,22 \cdot 10^{23}$	$m \ge 4,37 \cdot 10^{24}$

ヘロト 人間 とくほど 人間とう

臣

Partial ovoids and *m*-ovoids Summary tables

Bounds for *m*-ovoids of H(2d, 9)

d	Bound from Theorem 22	Bound from Theorem 24
3	$m \ge 6$	$m \ge 8$
4	$m \ge 18$	$m \ge 29$
5	$m \ge 53$	$m \ge 99$
6	$m \ge 158$	<i>m</i> ≥ 330
7	$m \ge 474$	$m \ge 1085$
100	$m\geq 1,12\cdot 10^{47}$	$m\geq 1,04\cdot 10^{48}$

Partial ovoids and *m*-ovoids Summary tables

Bounds for *m*-ovoids of $Q^-(7, q)$

q	Bound from Theorem 22	Bound from Theorem 25
3	$m \ge 4$	$m \ge 2$
4	$m \ge 5$	$m \ge 5$
5	$m \ge 6$	$m \ge 6$
7	$m \ge 8$	$m \ge 10$
8	$m \ge 9$	$m \ge 11$
$3^5 = 243$	<i>m</i> ≥ 244	<i>m</i> ≥ 345

< ロ > < 回 > < 回 > < 回 > < 回 >

Graph $NU(3, q^2)$ and block graphs Strongly regular graphs

G:=(V(G),E(G))

V = V(G) is a non-empty set, of element called *vertices* E = E(G) is the set of *edges*, together with an *incidence function* $\phi: E \to V \times V$. If $\phi(e) = \{u, v\}$ we say that *e joins u* and *v*, and those are called *adjacent vertices* or *neighbours*.

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices, each vertex lies on k edges, any two adjacent vertices have λ common neighbours and any two non-adjacent vertices have μ common neighbours.

Graph $NU(3, q^2)$ and block graphs

Let consider the projective space $PG(n, q^2)$, together with a non-degenerate Hermitian variety $H = H(n, q^2)$. Let $n \ge 2$ and $\varepsilon = (-1)^{n+1}$.

Definition

 $NU(n + 1, q^2)$ is the graph whose vertex set is $PG(n, q^2) \setminus H$, and two vertices are adjacent if they lie on the same tangent line.

Graph $NU(3, q^2)$ and block graphs Parameters of $NU(3, q^2)$

Proposition

 $NU(n+1, q^2)$ is a strongly regular graph with parameters:

$$\mathsf{v} = \frac{q^n(q^{n+1}-\varepsilon)}{q+1}$$

$$egin{aligned} &k=(q^n+arepsilon)(q^{n-1}-arepsilon)\ &\lambda=q^{2n-3}(q+1)-arepsilon q^{n-1}(q-1)-2\ &\mu=q^{n-2}(q+1)(q^{n-1}-arepsilon). \end{aligned}$$

Corollary

 $NU(3, q^2)$ has parameters

$$(q^4 - q^3 + q^2, (q^2 - 1)(q + 1), 2(q^2 - 1), (q + 1)^2)$$

Graph $NU(3, q^2)$ and block graphs Automorphism group of $Aut(NU(3, q^2))$

Theorem (F. Romaniello, V. S., 2022)

Let $G_2 = Aut(NU(3, q^2))$ be the automorphism group of the graph $NU(3, q^2)$:

• if $q \neq 2$, $G_2 \cong P\Gamma U(3, q)$, the semilinear collineation group stabilizing the Hermitian curve $H(2, q^2)$;

イロト イヨト イヨト イヨト 二日

2 if q = 2, $G_2 \cong S_3 \wr S_4 \cong S_3^4 \rtimes S_4$.

Graph $NU(3, q^2)$ and block graphs The dual block graph

Definition

An unital \mathcal{U} is a $2 - (a^3 + 1, a + 1, 1)$ block design, $a \ge 3$, i.e. a set of $a^3 + 1$ points arranged into blocks of size a + 1, such that each pair of distinct points is contained in exactly one block.

Definition

Let \mathcal{U} be an unital. The block graph of \mathcal{U} is the graph whose vertices are the blocks of the design, and two distinct blocks define adjacent vertices if they share a point.

Graph $NU(3, q^2)$ and block graphs Maximal cliques of block graphs

Work in progress with S. Adriaensen, J. De Beule, F. Romaniello.

Conjecture

 $Aut(\mathcal{U}) \cong Aut(\Gamma_{\mathcal{U}}).$

D. Mezőfi, G. P. Nagy, *Algorithms and libraries of abstract unitals and their embeddings, Version 0.5 (2018)*, (GAP package), https://github.com/nagygp/UnitalSZ

- Classical unital: $Aut(H(2, q^2)) \cong P\Gamma U(3, q);$
- 2 Ree unital: $Aut(ReeU(3)) \cong Ree(3) \cong P\Gamma L(2,8);$
- Buekenhout-Metz orthogonal unital, q = 3: Aut(BM(3)) ≅ (C₃ × C₃ × C₃) ⋊ Q₈;
- Buekenhout-Tits unital, q = 3: $Aut(BT(3)) \cong ((C_4 \times C_4) \rtimes C_8) \rtimes C_6;$
- **5** Bagchi-Bagchi unital, n = 6: Aut $(BB(6)) \cong C_7 \rtimes (C_{31} \rtimes C_{30})$.

Graph $NU(3, q^2)$ and block graphs Maximal cliques of block graphs and block graphs

Theorem (Hoffman's clique bound)

The size of a maximal clique of a k-regular graph \mathcal{G} is bounded by

$$\omega(\mathcal{G}) \leq 1 + rac{k}{|\lambda|},$$

where λ is the smallest eigenvalue.

Corollary

The size of a maximal clique of $\mathcal{G} = NU(3, q^2)$ is bounded by

$$\omega(\mathcal{G})\leq 1+rac{(q^2-1)(q+1)}{q+1}=q^2.$$

<回と < 目と < 目と

Graph $NU(3, q^2)$ and block graphs Maximal cliques of block graphs

Theorem (M. De Boeck, 2015)

Let $\mathcal U$ be a unital of order q and let S be a maximal Erdős–Ko–Rado set on $\mathcal U.$

● If
$$q \ge 5$$
 then either $|S| = q^2$ and S is a point-pencil, or else $|S| \le q^2 - q + q^{\frac{2}{3}} - \frac{2}{3}q^{\frac{1}{3}} + 1$.

2 If q = 4 then either $|S| = 16 = q^2$ and S is a point-pencil, or else $|S| \le 13 = q^2 - q + 1$.

If
$$q = 3$$
 then either $|S| = 9 = q^2$ and S is a point-pencil, or else $|S| \le 8$.

Corollary

 $Aut(\mathcal{U}) \cong Aut(\Gamma_{\mathcal{U}}).$

・ロト ・回ト ・ヨト ・ヨー うらぐ