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Finite classical polar spaces
Definitions

Let P be a finite classical polar space. Hence P is a member of
one of the following classes: a symplectic space W (2n + 1, q), a
parabolic quadric Q(2n, q), an hyperbolic quadric Q+(2n + 1, q),
an elliptic quadric Q−(2n + 1, q) or an Hermitian variety H(n, q)
(q a square). A projective subspace of maximal dimension
contained in P is called a generator of P. The vector dimension of
a generator of P is called the rank of P. Pd ,e will denote a polar
space of rank d ≥ 2 as follows:

Pd,e Q+(2d − 1, q) H(2d − 1, q) W (2d − 1, q) Q(2d, q) H(2d, q) Q−(2d + 1, q)

e 0 1/2 1 1 3/2 2

MPd,e
will denote the set of generators of the polar space Pd ,e ,

while MPd−1,e
will denote the set of generators passing through a

fixed point.
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Finite classical polar spaces
Known facts

Let θd := qd+1−1
q−1 = 1 + q + . . .+ qd .

Proposition

1 Pd ,e has |Pd ,e | = θd(qd+e−1 + 1) points;

2 the number of generators is |MPd,e
| =

∏d
i=1(qd+e−i + 1);

3 each generator contains θd points;

4 through each point there pass |MPd−1,e
| =

∏d
i=2(qd+e−i + 1)

generators.
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Finite classical polar spaces
Research problems

Nowadays, some research problems related to finite classical polar
space are:

existence of spreads and ovoids;

existence of regular systems and m-ovoids;

upper or lower bounds on partial spreads and partial ovoids.

Moreover, polar spaces are in relation with combinatorial objects as
regular graphs, block designs and association schemes.
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Partial ovoids and m-ovoids

Definition

1 An ovoid O of a polar space Pd ,e is a set of points of Pd ,e
such that every generator contains exactly one point of O.

2 A partial ovoid O of a polar space Pd ,e is a set of points of
Pd ,e such that every generator contains at most one point of
O. A partial ovoid is said to be maximal if it is maximal with
respect to set-theoretic inclusion.

3 An m-ovoid O of a polar space Pd ,e is a set of points of Pd ,e
such that every generator contains exactly m point of O,
0 ≤ m ≤ θd .
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Partial ovoids and m-ovoids
Partial ovoids of W (3, q), q odd

Parital ovoid in W (3, q) Partial spread in Q(4, q)

Size q + 1 q + 1 points on a Regulus of q + 1
non-isotropic line lines in Q+(3, q)

Theorem (G. Tallini, 1988)

If q even, W (3, q) has an ovoid of size q2 + 1.
If q odd, W (3, q) has no ovoids. Moreover, a maximal partial
ovoid has size at most q2 − q + 1.
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Partial ovoids and m-ovoids
Partial ovoids of W (3, q), q odd

O(Pd ,e) := size of the largest maximal partial ovoid of Pd ,e

Theorem (M. Ceria, J. De Beule, F. Pavese, V.S., 2022)

If q = p2n, p 6= 2, 3,

q
3
2 + 3q − q

1
2 + 3

3
< O(W (3, q)) ≤ q2 − q + 1.
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Partial ovoids and m-ovoids
The new construction

1 C = {(1,−3t, t2, t3)|t ∈ Fq} ∪ {(0, 0, 0, 1)} twisted cubic

2 G ' PGL(2, q) group of projectivities fixing C
3 G stabilizes W (3, q) given by x1y4 + x2y3 − x3y2 − x4y1
4 K ≤ G , K ' PGL(2,

√
q), fixes a twisted cubic C̄ ⊂ C of a

PG (3,
√

q) ⊂ PG (3, q).

5 ` line of PG (3, q), |` ∩ PG (3,
√

q)| =
√

q + 1

6 |` ∩ (C \ C̄)| = 2, if q ≡ −1 (mod 3),
|` ∩ C̄| = 2, if q ≡ 1 (mod 3)
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Partial ovoids and m-ovoids
The new construction

Proposition

∃P ∈ ` \ PG (3,
√

q), such that:

PK is a partial ovoid of W (3, q)

PK has size q
3
2−q

1
2

3

PK ∪ C is a partial ovoid of W (3, q) of size q
3
2+3q−q

1
2+3

3

PK ∪ C is not maximal!
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Partial ovoids and m-ovoids
Non-existance results for m-ovoids

P ′d ,e ∈ {Q−(2d + 1, q),W (2d − 1, q),H(2d , q2)}

Theorem (J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007)

Consider an m-ovoid O in the polar space P ′d,e . Then m ≥ b, with b given in
the table below.

P ′d,e b

Q−(2d + 1, q)
−3 +

√
9 + 4qd+1

2(q − 1)

W (2d − 1, q)
−3 +

√
9 + 4qd

2(q − 1)

H(2d , q2)
−3 +

√
9 + 4q2d+1

2(q2 − 1)
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Partial ovoids and m-ovoids
Characterstic function

Lemma

Suppose that O is a set of points in P ′d ,e with ambient projective
space PG (n, q). Then O is an m-ovoid if and only if for every
point p ∈ PG (n, q)

|p⊥ ∩ O| =

{
(m − 1)(qd+e−2 + 1) + 1, p ∈ O,

m(qd+e−2 + 1), p ∈ PG (n, q) \ O .

Let O be an m-ovoid with characteristic vector χ, and let π be any
subspace of the ambient projective space. The weight of π is then
defined as µ(π) =

∑
P∈π χP , i.e. the number of points of O

contained in π.

µ(p⊥) + qd+e−2µ(p) = m(qd+e−2 + 1)
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Partial ovoids and m-ovoids
Weighted m-ovoids

Definition

Consider µ : Pd ,e → N such that for every subspace π of PG (n, q)
it holds that µ(π) =

∑
p∈π µ(p). Then we call µ a weighted

m-ovoid of Pd ,e if for every point p it holds that

µ(p⊥) + qd+e−2µ(p) = m(qd+e−2 + 1).

Lemma

Suppose that µ is a weighted m-ovoid in P ′d ,e , then for every
j-dimensional space π in PG (n, q),

µ(π⊥) + qd+e−j−2µ(π) = m(qd+e−j−2 + 1).
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Partial ovoids and m-ovoids
Technical lemmas

Lemma

Suppose that µ is a weighted m-ovoid in P ′d,e and π is a j-subspace,

0 ≤ j ≤ d − 1. If µ(π⊥ \ π) 6= 0, then

m(qd+e−j−3 + 1)(m(qd+e−1 + 1)− µ(π)) + qd+e−2
∑

p∈π⊥\π

µ(p)2 =

= m(qd+e−2 +1)(m−µ(π))(qd+e−j−2 +1)+ qd+e−j−3
∑

p∈P′
d,e
\π

µ(p)µ(〈p, π〉) +
∑

s 6∈π⊥
µ(s⊥ ∩π) .

(1)
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Partial ovoids and m-ovoids
Technical lemmas

Corollary

Suppose that µ is a weighted m-ovoid in P ′d ,e and p0 is a point

such that µ(p0) < m. Then

m(qd+e−3 + 1)(m(qd+e−1 + 1)− µ(p0)) + qd+e−2
∑

p∈p⊥0 \{p0}

µ(p)2 =

= m(qd+e−2 + 1)2(m − µ(p0)) + qd+e−3
∑

p∈P′d,e\{p0}

µ(p)µ(〈p0, p〉)

Lemma

Let O be a non-trivial m-ovoid of P ′d ,e , with m ≥ 2. then

(q − 1)2m2 + 3(q − 1)m − qd+e−1 − q − 2 ≥ 0.
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Partial ovoids and m-ovoids
Improvement for Theorem 17

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Consider a non-trivial m-ovoid O in P ′d ,e , d ≥ 2, d > 2 for
W (2d − 1, q). Then m ≥ b, with b given in the table below.

P ′d ,e b

Q−(2d + 1, q)
−3 +

√
9 + 4(qd+1 + q − 2)

2(q − 1)

W (2d − 1, q)
−3 +

√
9 + 4(qd + q − 2)

2(q − 1)

H(2d , q2)
−3 +

√
9 + 4(q2d+1 + q2 − 2)

2(q2 − 1)
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Partial ovoids and m-ovoids
Main Theorem

Theorem

Assume that O is an m-ovoid in P ′d ,e and π is (d − 2)-subspace

such that µ(π⊥ \ {π}) 6= 0, with µ(π) = µ then

m2(qd+e−1−qd+e−2−q2e−1−qe)+m
[
qe
(
µ(qd−2 + 2qe−1 + q) + qd−2 + qe−1

) ]
−µ
(
qd+2e−2 + qd+e−2 + (1 + µ)(q2e−1 + qe−1) + qd+2e−1 q

d−2 − 1

q − 1

)
≥ 0
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Partial ovoids and m-ovoids
Main Theorem

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Let q > 2 and d ≥ 3. Suppose that O is an m-ovoid in P ′d ,e , with

d ≥ 4 OR e ∈ {1, 32} and (d , q, e) 6= (3, 3, 1). Then it holds that

m ≥
−d(1 + 2

qd−e−1 ) +
√

d2(1 + 2
qd−1 )2 + 4(q − 2)(d − 1)(qe+1 qd−2−1

q−1
+ qe + 1)

2(q − 1)
.

This bound asymptotically converges to

m ≥
−d +

√
d2 + 4(d − 1)(q − 2)qd+e−2

2(q − 1)
.
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Partial ovoids and m-ovoids
Main Theorem

Theorem (J. De Beule, J. Mannaert, V. S., 2023)

Suppose that O is an m-ovoid in Q−(7, q), for q > 2, then

m ≥
−9 +

√
9(1 + 2

q2
)2 + 8

(
q − 7

3

)
(q3 + q2 + 1)

2(q − 1)
.
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Partial ovoids and m-ovoids
Summary tables

Bounds for m-ovoids of W (2d − 1, 3)

d Bound from Theorem 22 Bound from Theorem 24

4 m ≥ 4 m ≥ 5

5 m ≥ 8 m ≥ 10

6 m ≥ 13 m ≥ 20

7 m ≥ 23 m ≥ 39

100 m ≥ 3, 59 · 1023 m ≥ 2, 53 · 1024
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Partial ovoids and m-ovoids
Summary tables

Bounds for m-ovoids of Q−(2d + 1, 3)

d Bound from Theorem 22 Bound from Theorem 24

4 m ≥ 8 m ≥ 8

5 m ≥ 13 m ≥ 18

6 m ≥ 23 m ≥ 36

7 m ≥ 40 m ≥ 69

100 m ≥ 6, 22 · 1023 m ≥ 4, 37 · 1024
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Partial ovoids and m-ovoids
Summary tables

Bounds for m-ovoids of H(2d , 9)

d Bound from Theorem 22 Bound from Theorem 24

3 m ≥ 6 m ≥ 8

4 m ≥ 18 m ≥ 29

5 m ≥ 53 m ≥ 99

6 m ≥ 158 m ≥ 330

7 m ≥ 474 m ≥ 1085

100 m ≥ 1, 12 · 1047 m ≥ 1, 04 · 1048
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Partial ovoids and m-ovoids
Summary tables

Bounds for m-ovoids of Q−(7, q)

q Bound from Theorem 22 Bound from Theorem 25

3 m ≥ 4 m ≥ 2

4 m ≥ 5 m ≥ 5

5 m ≥ 6 m ≥ 6

7 m ≥ 8 m ≥ 10

8 m ≥ 9 m ≥ 11

35 = 243 m ≥ 244 m ≥ 345
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Graph NU(3, q2) and block graphs
Strongly regular graphs

G := (V (G ),E (G ))

V = V (G ) is a non-empty set, of element called vertices
E = E (G ) is the set of edges, together with an incidence function
φ : E → V × V . If φ(e) = {u, v} we say that e joins u and v , and
those are called adjacent vertices or neighbours.

Definition

A strongly regular graph with parameters (v , k , λ, µ) is a graph
with v vertices, each vertex lies on k edges, any two adjacent
vertices have λ common neighbours and any two non-adjacent
vertices have µ common neighbours.
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Graph NU(3, q2) and block graphs

Let consider the projective space PG (n, q2), together with a
non-degenerate Hermitian variety H = H(n, q2).
Let n ≥ 2 and ε = (−1)n+1.

Definition

NU(n + 1, q2) is the graph whose vertex set is PG (n, q2) \ H, and
two vertices are adjacent if they lie on the same tangent line.
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Graph NU(3, q2) and block graphs
Parameters of NU(3, q2)

Proposition

NU(n + 1, q2) is a strongly regular graph with parameters:

v =
qn(qn+1 − ε)

q + 1

k = (qn + ε)(qn−1 − ε)

λ = q2n−3(q + 1)− εqn−1(q − 1)− 2

µ = qn−2(q + 1)(qn−1 − ε).

Corollary

NU(3, q2) has parameters

(q4 − q3 + q2, (q2 − 1)(q + 1), 2(q2 − 1), (q + 1)2).
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Graph NU(3, q2) and block graphs
Automorphism group of Aut(NU(3, q2))

Theorem (F. Romaniello, V. S., 2022)

Let G2 = Aut(NU(3, q2)) be the automorphism group of the graph
NU(3, q2):

1 if q 6= 2, G2
∼= PΓU(3, q), the semilinear collineation group

stabilizing the Hermitian curve H(2, q2);

2 if q = 2, G2
∼= S3 o S4

∼= S4
3 o S4.
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Graph NU(3, q2) and block graphs
The dual block graph

Definition

An unital U is a 2− (a3 + 1, a + 1, 1) block design, a ≥ 3, i.e. a
set of a3 + 1 points arranged into blocks of size a + 1, such that
each pair of distinct points is contained in exactly one block.

Definition

Let U be an unital. The block graph of U is the graph whose
vertices are the blocks of the design, and two distinct blocks define
adjacent vertices if they share a point.
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Graph NU(3, q2) and block graphs
Maximal cliques of block graphs

Work in progress with S. Adriaensen, J. De Beule, F. Romaniello.

Conjecture

Aut(U) ∼= Aut(ΓU ).

D. Mezőfi, G. P. Nagy, Algorithms and libraries of abstract unitals and their
embeddings, Version 0.5 (2018), (GAP package),
https://github.com/nagygp/UnitalSZ

1 Classical unital : Aut(H(2, q2)) ∼= PΓU(3, q);

2 Ree unital : Aut(ReeU(3)) ∼= Ree(3) ∼= PΓL(2, 8);

3 Buekenhout-Metz orthogonal unital, q = 3:
Aut(BM(3)) ∼= (C3 × C3 × C3) o Q8;

4 Buekenhout-Tits unital, q = 3:
Aut(BT (3)) ∼= ((C4 × C4) o C8) o C6;

5 Bagchi-Bagchi unital, n = 6:
Aut(BB(6)) ∼= C7 o (C31 o C30).
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Graph NU(3, q2) and block graphs
Maximal cliques of block graphs and block graphs

Theorem (Hoffman’s clique bound)

The size of a maximal clique of a k-regular graph G is bounded by

ω(G) ≤ 1 +
k

|λ|
,

where λ is the smallest eigenvalue.

Corollary

The size of a maximal clique of G = NU(3, q2) is bounded by

ω(G) ≤ 1 +
(q2 − 1)(q + 1)

q + 1
= q2.
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Graph NU(3, q2) and block graphs
Maximal cliques of block graphs

Theorem (M. De Boeck, 2015)

Let U be a unital of order q and let S be a maximal Erdős–Ko–Rado set
on U .

1 If q ≥ 5 then either |S | = q2 and S is a point-pencil, or else

|S | ≤ q2 − q + q
2
3 − 2

3q
1
3 + 1.

2 If q = 4 then either |S | = 16 = q2 and S is a point-pencil, or else
|S | ≤ 13 = q2 − q + 1.

3 If q = 3 then either |S | = 9 = q2 and S is a point-pencil, or else
|S | ≤ 8.

Corollary

Aut(U) ∼= Aut(ΓU ).
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