Directed regular graphs from groups

Matea Zubović (matea.zubovic@math.uniri.hr)

Matea Zubović matea.zubovic@math.uniri.hr

(Joint work with Vedrana Mikulić Crnković) This work has been supported by the University of Rijeka under the project number uniri-prirod-18-111-1249. Faculty of Mathematics, University of Rijeka

(4 何) ト 4 日 ト 4 日 ト

Content

◆ロト ◆□ ト ◆臣 ト ◆臣 ト ○ 臣 ○ の Q ()

A simple graph \mathcal{G} consists of a non-empty finite set $\mathcal{V}(\mathcal{G})$, whose elements are called vertices and a finite set $\mathcal{E}(\mathcal{G})$ of different 2-subsets of set $\mathcal{V}(\mathcal{G})$ whose elements are called edges.

Definition

A directed graph or a digraph \mathcal{G} consists of a non-empty finite set $\mathcal{V}(\mathcal{G})$, whose elements are called vertices, and of a finite family $\mathcal{E}(\mathcal{G})$ of ordered pairs of elements of set $\mathcal{V}(\mathcal{G})$ whose elements are called arcs.

- 4 回 ト - 4 回 ト

Let $\mathfrak{G} = (\mathfrak{V}, \mathfrak{E}, \mathfrak{I})$ be a graph with n vertices. Graph \mathfrak{G} is strongly regular graph or SRG with parameters (n, k, λ, μ) , $SRG(n, k, \lambda, \mu)$, if

- 9 is simple k-regular graph,
- 2) any two adjacent vertices have λ common neighbours,
- **③** any two non-adjacent vertices have μ common neighbours.

Definition

A quasi-strongly regular graph (QSRG) with parameters ($n, k, a; c_1, c_2, ..., c_p$) is a k-regular graph on n vertices such that any two adjacent vertices have a common neighbours and any two non-adjacent vertices have c_i common neighbours for some $1 \le i \le p$.

イロト 不得 トイヨト イヨト

Art M. Duval, A directed graph version of strongly regular graphs, Journal of Combinatorial Theory, 1988.

Definition

A directed strongly regular graph with parameters (n, k, λ, μ, t) is a directed graph Γ on n vertices without loops such that

- (i) every vertex has in-degree and out-degree k,
- (ii) every vertex x has t out-neighbours that are also in-neighbours of x, and
- (iii) the number of directed paths of length 2 from a vertex x to another vertex y is λ if there is an edge from x to y, and is μ if there is no edge from x to y.

Such a graph Γ is called a DSRG(n, k, λ , μ , t).

The adjacency matrix $A = A(\Gamma)$ of directed strongly regular graph satisfies

$$A^{2} = tI + \lambda A + \mu(J - I - A),$$
$$AJ = JA = kJ.$$

DSRG with
$$t = k$$
 is SRG.

Matea Zubović(matea.zubovic 健 math.uniri.l

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Guo, Z., Jia, D. and Zhang, G. Some Constructions of Quasi-strongly Regular Digraphs. Graphs and Combinatorics, 2022.

Definition

A quasi-strongly regular digraph with parameters $(n, k, t, a; c_1, c_2, ..., c_p)$, also denoted by $QSRD(n, k, t, a; c_1, c_2, ..., c_p)$, is a k-regular digraph on n vertices such that

- (i) each vertex is incident to t undirected edges;
- (ii) for any two vertices $x \rightarrow y$ the number of paths of length 2 from x to y is a;
- (iii) for any distinct vertices $x \not\rightarrow y$ the number of paths of length 2 from x to y is c_i , where $1 \le i \le p$,
- (iv) for any 1 ≤ i ≤ p there exist distinct vertices x → y such that the number of paths of length 2 from x to y is c_i.

Proposition

Let Γ be a digraph with n vertices and let A be the adjacency matrix of Γ . Then Γ is a $QSRD(n, k, t, a; c_1, c_2, \dots, c_p)$ if and only if

$$AJ = JA = kJ,$$

$$A^2 = tI + aA + c_1C_1 + c_2C_2 + \dots + c_pC_p$$

for some non-zero (0,1)-matrices C_1, C_2, \ldots, C_p such that $C_1 + C_2 + \cdots + C_p = J - I - A$.

p is the grade of QSRD.

Matea Zubović(matea.zubovic ${\mathscr Q}$ math.uniri.

Let Ω be a finite set and let R_0, R_1, \ldots, R_d be a partition of $\Omega \times \Omega$. Then $(\Omega, \{R_0, R_1, \ldots, R_d\})$ is called a d-class association scheme if the following conditions hold.

(i) $R_0 = \{(x, x) | x \in \Omega\};$ (ii) for any $i \in \{0, 1, ..., d\}$, there exists $i' \in \{0, 1, ..., d\}$, such that

 $R_{i'} = \{(x, y) | (y, x) \in R_i\};$

(iii) for any $i,j,k\in\{0,1,\ldots,d\}$ and any pair $(x,y)\in R_k,$ the number

$$p_{ij}{}^k = |\{z \in \Omega | (x, z) \in R_i \text{ and } (z, y) \in R_j\}|$$

depends only on i, j, k.

Theorem

Let $(\Omega, \{R_0, R_1, R_2, \ldots, R_d\})$ be a d-class association scheme, and let Γ_i be a digraph with vertex set Ω and arc set R_i , where $i \in \{1, 2, \ldots, d\}$. Then each Γ_i is a QSRD. Moreover, the grade of Γ_i is p if and only if p_{ii}^{ji} takes on p distinct values as j ranges over $\{1, 2, \ldots, d\} \setminus \{i\}$.

A group G acts on a set Ω if there exists a function $f:G\times\Omega\to\Omega$ such that

Denote the described action by $g.x, g \in G$. The set $G_x = \{g \in G | g.x = x\}$ is a group called **stabilizer** of the element $x \in \Omega$.

The action of the group G on set Ω induces the equivalence relation on set Ω : $x \sim y \Leftrightarrow (\exists g \in G) g.x = y$. The equivalence classes are **orbits** of the action.

(日本) (日本) (日本)

Group G acts **transitively** on set Ω if

$$(\forall x, y \in \Omega)(\exists g \in G)$$
 such that $g.x = y$,

that is, if there exists an element $x \in \Omega$ such that $G.x = \Omega$.

Let group G act transitively on set Ω . Then group G acts on set $\Omega \times \Omega$ like this: $g.(x_1, x_2) = (g.x_1, g.x_2)$. Orbits for that action are called **orbitals** of group G on set Ω . G transitive permutation group on set Ω , $H \leq G$.

- For each orbital Δ there is an orbital Δ*, where (α, β) ∈ Δ* if and only if (β, α) ∈ Δ. An orbital is *self-paired* if Δ* = Δ.
- $T \subseteq G$ is a **left (right) transversal** or a set of representatives of all left (right) cosets of H in G if T contains exactly one element of each left (right) coset aH (Ha), $a \in G$.
- There exists a bijection from the set of orbitals to set of G_α-orbits.
 G_α-orbits are called **suborbits**, and their sizes are **subdegrees** of permutation group G.

Construction of transitive 1-designs from finite group:

D. Crnković, V. Mikulić Crnković and A. Švob: On some transitive combinatorial structures constructed from the unitary group U(3,3). Journal of Statistical Planning and Inference, 2014.

Theorem

Let G be a finite permutation group acting transitively on sets Ω_1 and Ω_2 of size m and n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^{s} G_{\alpha}.\delta_i$, where $\delta_1, \ldots, \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{g.\Delta_2 : g \in G\},\$$

then $\mathcal{D}(G, \alpha, \delta_1, \dots, \delta_s) = (\Omega_2, \mathcal{B})$ is a 1- $(n, |\Delta_2|, \frac{|G_{\alpha}|}{|G_{\Delta_2}|} \sum_{i=1}^s |G_{\delta_i}.\alpha|)$ design

with $\frac{m \cdot |G_{\alpha}|}{|G_{\Delta_2}|}$ blocks. The group $H \cong G / \cap_{x \in \Omega_2} G_x$ acts as an automorphism group on (Ω_2, \mathcal{B}) , transitively on points and blocks of the design.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Construction of directed regular graphs:

Theorem (MZ, Mikulić Crnković, Vedrana)

Let G be a finite permutation group acting transitively on the set Ω . Let $\alpha \in \Omega$ and let $\Delta = \bigcup_{i=1}^{s} \delta_i G_{\alpha}$ be a union of orbits of the stabilizer G_{α} of α , where $\delta_1, \ldots, \delta_s$ are representatives of different G_{α} - orbits. Let $T = \{g_1, \ldots, g_t\}$ be a set of representatives of left cosets in $G/G_{\alpha} = \{g_1 G_{\alpha}, \ldots, G_t G_{\alpha}\}$. Let $\mathcal{V} = \{g_i.\alpha | i = 1, \ldots, t\}$ and let $\mathcal{E} = \{(g_i.\alpha, g_i.\beta) | i = 1, \ldots, t, \beta \in \Delta\}$. Then $\Gamma = (\mathcal{V}, \mathcal{E})$ is a directed graph with $|\Omega|$ vertices that is $|\Delta|$ -regular and such that $g_i.\Delta$ is a set of out-neighbours of the vertex $g_i.\alpha$, $i = 1, \ldots, t$.

Theorem (MZ, Mikulić Crnković, Vedrana)

If a group G acts transitively on a set of vertices of a directed regular graph $\mathfrak{G} = (\mathcal{V}, \mathcal{E})$, then there exists a set Ω such that vertices and arcs of a digraph \mathfrak{G} are defined in the way described in the previous theorem.

Example

 D_3 acts transitively on $\Omega = \{1, 2, 3, 4, 5, 6\}$ in six suborbits of length 1. Take $\Delta_1 \cup \Delta_2 = \{2, 3\}$ as a set of out-neighbours of vertex $\alpha = 1 \in \Omega$:

> $g_1.\{2,3\} = \{2,3\}$ is a set of out-neighbours of a vertex $g_1.\alpha = 1$, $g_2.\{2,3\} = \{1,6\}$ is a set of out-neighbours of a vertex $g_1.\alpha = 2$, $g_3.\{2,3\} = \{4,5\}$ is a set of out-neighbours of a vertex $g_1.\alpha = 3$, $g_4.\{2,3\} = \{3,2\}$ is a set of out-neighbours of a vertex $g_1.\alpha = 4$, $g_5.\{2,3\} = \{6,1\}$ is a set of out-neighbours of a vertex $g_1.\alpha = 5$, $g_6.\{2,3\} = \{5,4\}$ is a set of out-neighbours of a vertex $g_1.\alpha = 6$.

Adjacency matrix:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Figure: DSRG(6,2,0,1,1)

GAP - Transitive Groups Library:

Theorem

- There are, up to isomorphism, 478 quasi-strongly regular graphs on which a transitive automorphism group of degree n, n ∈ {4,..., 30}\{22, 24, 28, 30}, acts. 19 of them are strongly regular graphs.
- ② There are, up to isomorphism, 2920 directed quasi-strongly regular graphs on which a transitive automorphism group of degree n, n ∈ {4,...,30}\{22,24,28,30}, acts. 478 of them are directed strongly regular graphs.

Degree	# QSRG	# SRG	# QSRD	# DSRG
22	39	2	18	
24	7853		68171	64
28	213	2	447	22
30	110	40	642	

Table: Number of graphs obtained from transitive non-regular permutation groupsof degree $n, n \in \{22, 24, 28, 30\}$

https://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html

v	k	t	λ	μ	rf	s ^g	comments		
21	6	2	1	2	014	-16	<u>T8</u> (i) for 2-(7,3,1)	<u>T12</u>	T18 for (d,l,s)=(1,2,3)
	14	10	9	10	06	-1^{14}	<u>T18</u> for $(d,l,s)=(2,4,3)$		
21	8	4	3	3	16	-1^{14}	<u>T8(ii)</u> for 2-(7,3,1)	<u>T9</u> for pg(3,3,3)	<u>T18</u> for (d,l,s)=(1,2,3)
	12	8	6	8	0 ¹⁴	-2 ⁶	<u>T12</u>	T18 for (d,l,s)=(2,4,3)	
22	9	6	3	4	111	-2^{10}	?		
	12	9	6	7	1 ¹⁰	-2^{11}	?		

Figure: (Non)existence of DSRGs with parameters (22, 9, 3, 4, 6) and (22, 12, 6, 8, 8)

Graphs from unions of length k = 9 and k = 12 from regular permutation representations of \mathbb{Z}_{22} and D_{11} of degree 22:

Degree	Parameters	# non-isom.	Aut(9)
22	QSRG(22,9,0;8,7,0)	1	D ₂₂
	QSRD(22,9,5,4;4,3)	1	D ₂₂
	QSRD(22,9,7,0;9,8,7,0)	4	\mathbb{Z}_{22}
	QSRD(22,9,8,0;9,8,7,0)	1	\mathbb{Z}_{22}

Table: Graphs obtained from regular permutation groups \mathbb{Z}_{22} and D_{11} of degree 22

- Construction of self-orthogonal codes from adjacency matrix A of DSRG(n, k, λ, μ, t) with t = μ.
- Construction of LCD codes from matrices $[A|I_n]$ and $[A, I_n, 1]$, where A is the adjacency matrix of DSRG (n, k, λ, μ, t) with $t = \mu$.

- 4 回 ト 4 三 ト 4 三 ト

Thank you for your attention!

э

イロト イボト イヨト イヨト